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Abstract
Vertical water flow is a decisive factor for slope stability and instability, but its characterization in the field remains a chal-
lenge. Quantifying flow rates in slopes is commonly impeded by insufficient resolution during field investigations or the 
limited insight obtained from near-surface geophysical methods. This study aims to develop a convenient method to inves-
tigate vertical water flow in slopes on the sub-meter scale. We present a numerical method to estimate flow rates based on 
temperature–depth profiles. In order to account for typical small-scale variabilities and complex boundary conditions in 
slopes, these profiles are obtained by high-resolution temperature measurements with passive distributed temperature sens-
ing (passive-DTS). The transient heat tracing data is inverted in space and time to derive trends of perturbing vertical flow. 
The method is successfully validated in a laboratory tank with a series of experiments under well-controlled hydraulic and 
temperature boundary conditions. It is demonstrated that upward and downward flow rates greater than 1.0 × 10−6 m·s−1 
can be properly estimated, and the influence of moving water on the thermal profiles can be identified even to a flow rate of 
1.0 × 10−7 m·s−1.
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Introduction

Vertical water flow plays an important role in slope stability. 
The decline of groundwater level and downward subsurface 
flow has been demonstrated to be a critical factor for res-
ervoir landslides (Deng and Yang 2021; Han et al. 2021; 
Iverson and Reid 1992; Jia et al. 2009), embankment dam 
failures (Foster et al. 2000; Kudrolli and Clotet 2016; Wang 
et al. 2018), and landfill stability (Chen et al. 2019; Shaikh 
et al. 2021). Quantification methods for vertical water flow 
include rainfall and water level measurements (Jia et al. 
2009; Xu et al. 2021; Zhu et al. 2020), the self-potential 
method (Ahmed et al. 2020; Ikard et al. 2012), and active 

distributed temperature sensing (DTS) or fiber Bragg grat-
ing sensing (Chen et al. 2021; Yan et al. 2015). Yet, it is still 
challenging to quantify flow rates in slopes through these 
methods, given the often variable and dynamic hydraulic 
conditions in heterogeneous materials.

Temperature serves as an established tracer to evaluate 
water flow conditions (Anderson 2005; Gossler et al. 2019; 
Kurylyk et al. 2018; Simon et al. 2021; Wagner et al. 2014). 
Natural temperature data is readily obtainable (Steele-Dunne 
et al. 2010) and recorded in wells primarily as depth-dependent 
profiles or time series (Hemmerle and Bayer 2020; Benz et al. 
2018). Frequently, thermistors are employed as temperature 
loggers. They provide temperatures at a given depth, and sev-
eral loggers can be combined as multi-level measuring devices 
to record profiles (Epting et al. 2017; Munz and Schmidt 
2017). Alternatively, passive-DTS has attracted widespread 
attention for its high spatial and temporal resolution of soil and 
water temperature variability (Bense et al. 2016; Briggs et al. 
2012; Selker et al. 2006).

The ground acts as a low-pass filter for downward-propagating 
surface temperature trends. While diurnal variations penetrate 
only decimeters deep, long-term climate change can be detected 
at depths of tens to hundreds of meters. A common approach for 
interpreting profiles is representing the thermal ground surface 
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conditions by a temperature boundary. It is implemented in a 
one-dimensional (1D) flow and heat transport model to calculate 
vertical flow rates, particularly at near-surface boreholes and in 
the hyporheic zone (Bense et al. 2016; Briggs et al. 2012; Rau 
et al. 2012; Schneidewind et al. 2016; Stallman 1965). Verti-
cal water flow alters temperature-depth profiles compared to  
what would be expected from purely conduction-controlled 
conditions. Instead of linear temperature-depth trends accord-
ing to the geothermal gradient, bulged curves indicate advec-
tive upward or downgradient flow components (Andrews and 
Anderson 1979; Anibas et al. 2011). Analytical models with 
steady-state flow conditions are often considered for interpret-
ing thermal ground conditions (Hatch et al. 2006; Keery et al. 
2007; Menberg et al. 2014). Similarly, transient conditions can 
be interpreted based on fluctuating temperature signals. Thermal 
forcing may be determined by calibrating a sinusoidal function to 
delineate regular variation, or flexible polynomial, step function, 
and multifrequency approaches may be adopted to characterize 
more complex impacts (Kurylyk and Irvine 2016; Luce et al. 
2017; Pintelon et al. 2010). Recently, Lin et al. (2022) presented 
an analytical heat transfer model and inverse approach to estimate  
the transient vertical flow rate for a sinusoidal function-based 
ground surface temperature boundary. Alternatively, numerical 
calculations enable to flexible describe transient process simula-
tion and boundary specification (Kurylyk et al. 2018; Stauffer 
et al. 2019). However, in particular, for transient conditions, the 
use of numerical methods is still not common.

Temperature boundaries on the surface can exhibit irreg-
ular patterns caused by different superimposed factors, such 
as flood events, snowmelt, and urban heat islands (Noethen 
et al. 2022). Under such conditions, developing an analyti-
cal solution for estimating the transient vertical water flow 
rate based on a fluctuating temperature boundary is chal-
lenging. Applying a numerical heat transport model may 
be favorable because of its flexibility in terms of boundary 
conditions and concise spatial data processing capability. 
Several numerical model codes simulate heat transport in 
porous media (Halloran et al. 2016; Ren et al. 2018) (e.g., 
HYDRUS, VS2DH, FlexPDE, and COMSOL Multiphys-
ics), but these advanced tools may not be readily acces-
sible, particularly for inexperienced users. 1D numerical 
codes developed specifically for simulating and inverting 
temperature profiles (Holzbecher 2005; Koch et al. 2016; 
Lapham 1989; Munz and Schmidt 2017) are designed to 
analyze temperature-time series such as 1DTempProV2 and 
FLUX-BOT. Unfortunately, there is no similar tool avail-
able to deal with temperature-depth profiles, which can also 
be used to calculate subsurface flow in saturated sediments 
(Irvine et al. 2020).

The limited applicability of analytical solutions using tem-
perature–depth profiles when the required boundary condi-
tions are not met, and the lack of flexible numerical codes 
to process temperature-depth profiles, is the motivation for 

us to develop a new numerical approach. It is implemented 
by a forward simulation and inversion code TempFlow. This 
is inspired by Lapham’s numerical approach (Lapham 1989) 
and the utilization of temperature-depth profiles in FAST 
(Kurylyk and Irvine 2016). TempFlow allows the flexibility to 
analyze temperature–depth profiles and estimate vertical flow 
rates. To accommodate a complex change in ground surface 
temperature, a transient numerical solution is applied to the 
conduction-convection equation. The objective of this study 
is to use this approach to interpret vertical water flow, which 
is common in slopes, at a high spatial and temporal resolution 
on the sub-meter and daily scale, respectively. For validation, 
laboratory experiments were conducted under diverse thermal 
and hydraulic conditions.

Methodology

Vertical water flow can be determined from transient tem-
perature data because of the dependence of ground ther-
mal conditions on convection. Details on the heat transport 
through porous media, the TempFlow program, and the tank 
experiments are described in the following.

Heat transfer in porous media

Heat transfer in porous media is controlled by convection 
(or advection) and conduction. Assuming that the media 
is uniform and isotropic, the 1D, constant-parameter heat 
transport equation (HTE) can be expressed as follows (Rau 
et al. 2012):

where T (°C) is the temperature of the media at position x 
and it changes with time t (s) and v (m·s−1) is the velocity of 
the propagating heat front. Assuming that mechanical ther-
mal dispersion is negligible compared to heat conduction 
(Hopmans et al. 2002), the thermal diffusivity D (m2·s−1) 
is calculated as

with

where λ (W·m−1·K−1) is the thermal conductivity of porous 
media, including fluid λw and solid λs (W·m−1·K−1), and n 
(%) is the porosity of the soil. ρc (J·m−3·K−1) is the volumet-
ric heat capacity of the porous media, cw and cs (J·kg−1·K−1) 

(1)D
�2T

�x2
− v

�T

�x
=

�T

�t

(2)D =
�

�c

(3)� = n�w + (1 − n)�s

(4)�c = n�wcw + (1 − n)�scs



Bulletin of Engineering Geology and the Environment           (2023) 82:20 	

1 3

Page 3 of 14     20 

are the specific heat capacities of the fluid and the solid, 
respectively, while ρw and ρs (kg·m−3) represent the densi-
ties of the fluid and the solid. In this study, ρw and cw are 
considered constant. The heat front velocity is expressed as

where q (m·s−1) is the Darcy velocity or flow rate.

TempFlow

TempFlow is developed to estimate the flow rate q or other 
unknown parameters given in Eqs. (1)–(5). The method’s 
workflow is shown in Fig. 1. The forward heat conduction 
problem is tackled by solving the HTE with a Dirichlet 
boundary condition on both sides, i.e., at the top and bottom. 
The distribution of T(x, t) on the boundary Г is expressed as

In order to represent flexible temperature boundaries 
and filter temperature data, a higher-order function with 
a combination of basic functions is used to fit tempera-
ture–time series to T(t) by means of the Levenberg–Mar-
quardt algorithm. Four basic functions are available in 
TempFlow: the polynomial function, the Fourier function, 
the Gaussian function, and the trigonometric function.

The initial condition function can also be represented 
using a combination of basic functions, expressed as

The solution is obtained by using the numerical pdepe-
solver implemented in MATLAB. Initial and boundary 
values are taken from T0(x) and T(t). Moreover, the fol-
lowing assumptions are made:

1.	 The sediment is homogeneous and isotropic, with the 
same thermal conductivity values in different directions.

2.	 The flow rate within a layer is constant, and heat transfer 
is only considered in the direction of flow.

3.	 The temporal resolution of the estimated flow rates 
can be adjusted by choosing suitable time windows for 
TempFlow.

The time ti represents thermal conditions that are suited 
for inversion. It usually takes several hours to observe a 
sufficiently evolved temperature–depth profile when start-
ing with isothermal conditions. A profile is obtained from 
measured data and compared with the numerical solution 
at ti, named Tmeasured (x, ti) and Tsimulated (x, ti). The differ-
ence between Tmeasured (x, ti) and Tsimulated (x, ti) is evalu-
ated by the root-mean-square error (RMSE (°C)), defined 
as

(5)v =
�wcw

�c
q

(6)T(x, t)Γ = T(t)

(7)T(x, t)t=0 = T0(x)

where ζ is the number of observed temperature measurement 
points in the vertical x direction, which is determined by 
the spatial resolution of the temperature sensor. A higher ζ 
value is helpful to accurately resolve the difference between 
Tmeasured and Tsimulated from a mathematical point of view. 
The MATLAB function min is used to find parameters of 
Eqs. (1)–(5) that minimize the RMSE between the simulated 
and observed temperature at a depth of the temperature sen-
sor. As a fitting criterion for the calibration with TempFlow, 
we set RMSE < 0.5 °C.

Temperature measurement errors may influence the reli-
ability of the estimated flow rate (Anderson 2005). There 
are three primary error sources: temperature resolution, 
temperature measurement accuracy, and the finite instru-
ment response time for temperature measurement using 
DTS. We employ the 1D numerical model with steady-state  
vertical fluid flow in a porous media to study the impact of  
these three error sources on the estimation of flow rate, q, 
which is varied from 10−8 m·s−1 to 10−4 m·s−1. The simu-
lation is conducted with pdepe implemented in MATLAB. 
The mesh size of the model is set to 0.01 m, the height to 
5 m, the bottom temperature boundary fixed at 15 °C, and  

(8)RMSE =

�
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�
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Fig. 1   Flow chart of the forward simulation and inversion with Temp-
Flow. HTE, heat transport equation; RMSE, root-mean-square error
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the top temperature boundary at 25 °C. The initial temper-
ature of the model is specified as 15 ℃, and the geometry 
of the temperature sensor is not resolved in the model.

The temperature-depth profile shows a significant change 
for the given range of vertical flow rate after 180 min, and 
the model’s run time thus is limited to 180 min. Tempera-
ture resolution, temperature accuracy, finite instrument 
response time, and spatial resolution are adopted as vari-
ables for sensitivity analysis. In addition, since errors may 
vary over a large range, we consider twice the actual value 
as the upper limit and one-tenth of the actual value as the 
lower limit.

Tank experiments

For experimental validation of flow rate estimation using 
TempFlow, tank experiments with different flow rates 
and temperature boundaries were conducted to reproduce 
complex flow fields in slopes. The tank is 3 m long, 1.5 m 
wide, and 1.5 m deep. The upper and lower filter layers 
were filled with gravel and sand. This establishes uniform 
flow boundaries for vertical flow, representing a “surface 
water” boundary and a “groundwater” boundary (Fig. 2a). 
The tank was configured to model a water-saturated slope 
fragment, simplified to two layers of sediment with differ-
ent hydraulic conductivities in the slope. Layer 1 is a fine 
sand and kaolin mixture with a mass ratio of 8.5:1.5. It has 
a lower hydraulic conductivity of K1 = 1.820 × 10−6 m·s−1. 
Layer 2 is a fine sand and kaolin mixture with a mass ratio 
of 9:1 and K2 = 2.726 × 10−6 m·s−1 (Table 1). As illustrated 
in Fig. 2, the vertical position 0 cm was defined as the top 
of layer 1 (0–24 cm), and 124 cm was the bottom of layer 
2 (24–100 cm). During filling of the layers in the tank, a 
certain degree of unevenness was introduced in the layer 
boundaries which is hardly avoidable over such a large area 
(3 × 1.5 m) and volume of the tested specimen. To a certain 
degree, this also reflects the variability that can be expected 
in horizontal layers of sediments in the field.

A set of high-resolution fiber-optic temperature sensing 
tubes (HSFTs) was used to measure the thermal conditions 
in the tank. A sensing tube consists of a PVC tube (45 mm in 
diameter and 125 cm long) and a temperature sensing opti-
cal cable wrapped around it (Fig. 2b). The spatial (vertical) 
resolution of the DTS cable is around 40 cm, but it is greatly 
improved to 1.2 cm by wrapping the cable around the tube. 
The DTS demodulator records the temperature response of 
the HSFT at a time resolution of 10 s, with a temperature 
resolution of 0.01 °C. Ten HSFTs were installed in the tank 
with a 30 cm space interval.

Two external reservoirs were connected to the tank 
to establish and control different hydraulic and tempera-
ture boundary conditions during the experiments. This is 

achieved by supplying water at a given pressure and tem-
perature (Fig. 2c). By inverting the temperature recorded 
at each HSFT individually, a flow rate in layer 1 and 
another flow rate in layer 2 can be derived. Altogether, 
thus, we can obtain twenty flow rates in one experiment.

To validate the applicability of the proposed method 
in a complex slope environment, different hydraulic and 
thermal conditions are assigned to resemble 1D, verti-
cal flow. We define three experimental scenarios with 
different variants as follows (Table  2): (1) scenario I 
with upward flow (variant 1–1), where an upward flow 
rate of − 1.3 × 10−5 m·s−1 was applied and cold water of 
3–3.5 °C was injected at the bottom filter layer. The ther-
mal conditions at the top layer were kept at room tem-
perature (20 °C). (2) Scenario II is where there is a weak 
downward flow (variants 2-1, 2-2, 2-3). The experimen-
tal setup of this scenario induces a small downward flow 
rate of 8.2 × 10−8 m·s−1. In three stages, different types of  
temperature boundaries were set (Table 2). First, in 2-1, 
similar to a reverse 1-1 setup, cold water of 3 °C was 
injected at the top while keeping the bottom temperature 
boundary at 19 °C. In the next stage, 2-2, the inflow tem-
perature was gradually increased over 660 min, reaching 
a relatively high temperature of 30 °C in 2-3. (3) Scenario 
III is where there is a strong downward flow (variants 3-1, 
3-2). The role of high downward flow rates was tested 
(3.7 × 10−5 m·s−1, 4.2 × 10−5 m·s.−1), keeping thermal con-
ditions stable similar to during the beginning of the second 
scenario (2-1), with warm water injection at the top. Fur-
thermore, for each scenario and layer, the Peclet number 
is defined as (Huysmans and Dassargues 2005)

where L is a characteristic linear dimension (travel distance 
of the fluid, L = 2HW/(H + W), H is the thickness of a layer, 
and W is the width of the tank).

For each experiment, the average flow rate in the tank 
was measured independently and manually through the 
outlet flow (Scenarios I and III) and the water head (Sce-
nario II). The initial thermal conditions of different experi-
ments were determined by measuring the temperatures at 
different depths in both layers before starting the tests. 
Given the test conditions with sequential experiments, ini-
tial conditions may not be perfectly isothermal but influ-
enced by previous experiments. As TempFlow can handle 
any initial conditions, the focus is on properly recording 
initial temperatures but not on full thermal recovery after 
each experiment. During the tests, under different tem-
perature boundary conditions and under different hydraulic 
conditions, the temperature changes in each layer were 
recorded.

(9)Pe =
qL

D
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Fig. 2   a Sketch of the tank experiment with ten high spatial resolu-
tion fiber-optic temperature sensing tubes (HSFTs) installed equidis-
tantly in the tank for measuring the temperature in sediment layers 1 

and 2; b layout of HSFT showing the wrapping of fiber optical cable 
around polyvinyl chloride (PVC) tube; c photo of the tank experiment 
system

Table 1   Physical properties of 
materials in the tank

Parameter Density ρ 
(kg·m−3)

Porosity n (%) Thermal conductivity 
λ (W·m·K−1)

Specific heat 
capacity c 
(J·kg·K−1)

Hydraulic 
conductivity K 
(m·s−1)

Water 1000 / 0.59 4200 /
Layer 1 1980 0.247 1.34 1800 1.82 × 10−6

Layer 2 1930 0.235 1.25 1600 2.73 × 10−6
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Results

To examine the applicability of TempFlow, we first discuss 
the influence of temperature measurement errors on the 
estimation of flow rates. For this, the simulation procedure 
is applied to synthetic data generated by the 1D numeri-
cal model. Second, measured data from tank experiments 
are used to estimate flow rates for reproducing realistic 
conditions.

Effect of temperature measurement errors 
on estimated flow rate

When the temperature is measured by passive-DTS, there are 
three primary error sources: temperature resolution, tempera-
ture measurement accuracy, and finite instrument response 
time. Deficient measurements cause a difference between 
measured and actual temperatures, and this compromises 
the estimating of the flow rate based on measured tempera-
tures. Figure 3a shows the impact of temperature resolution 
(η) on the estimated flow rates. A higher η can significantly 
increase the accuracy in estimating a low flow rate and reduce 
uncertainty. When the flow rate is 1.0 × 10−6 m·s−1, η of 
0.01 °C, 0.1 °C, and 0.5 °C results in an error of 0.7%, 2.6%, 
and 5.0%, respectively. Enhancing the temperature accuracy 
or reducing the finite instrument response time (δ) can also 
improve the reliability of flow rate estimation (Fig. 3b, c). 
Obviously, for the examined error ranges, the temperature 
accuracy has a greater impact on the flow rate estimation than 
the finite instrument response time. The temperature error 
with a flow rate of 1.0 × 10−6 m·s−1 is 25.5%, 76.6%, and 
90%, respectively, and with a finite instrument response time 
(δ) of 2 min, 5 min, and 10 min, the error is 3.1%, 8.8%, and 
18.4%, respectively. Among the three factors, temperature 
accuracy has the most significant impact on the error of the 
results, followed by the instrument response time and tem-
perature resolution. Limited temperature resolution would 
add uncertainty to the estimation.

The number of temperature measurement points in a 
stratum (i.e., spatial resolution, μ) determines the observed 
accuracy of the true temperature-depth profile. We further 

investigate the role of spatial resolution by comparing three 
different settings (1 cm, 5 cm, 10 cm), and we examine how 
it influences the flow rate estimation with a temperature 
resolution of 0.5 °C. As shown in Fig. 2d, a lower spatial 
resolution will increase the uncertainty in estimating the 
flow rate. According to the results with a spatial resolution 
of 5 cm and 10 cm, the estimated flow rate error is below 
20% if the flow exceeds 1.0 × 10−5 m·s−1. A higher spatial 
resolution can compensate for determining the true flow rate 
for lower temperature resolution.

Based on the results above, when the flow rate is less than 1.0 
× 10−7 m·s−1, TempFlow cannot estimate the flow rate. When it 
is larger than 1.0 × 10−7 m·s−1 and smaller than 1.0 × 10−6 m·s−1, 
the flow rate can be approximated but with limited accuracy.

Estimation of flow rate using TempFlow

We first provide an illustrative TempFlow example by esti-
mating the vertical flow rate using the temperature profile  
of HSFT 2 in layer 2 in Scenario 1-1. In this experiment, 
cold water is injected from the bottom along an upward 
hydraulic gradient. A continuous series of measured tem-
perature-depth values is shown in Fig. 4a for a constant flow 
rate. In Fig. 4b, the scatter plots represent the temperature at 
the boundaries (depth = 24 cm and 124 cm in Fig. 4a). The 
transient boundary conditions are determined for TempFlow 
by curve fitting (solid line) to these temperatures. The ini-
tial conditions are reconstructed by the green line in Fig. 4d 
accordingly.

After implementing the initial and boundary conditions, 
TempFlow is used to estimate the thermal diffusivity D and 
the heat transport velocity v, and thus, the flow rate is calcu-
lated based on Eq. (5). A reasonable fit (RMSE = 0.09 °C) 
between the measured temperature–depth profile and the 
calculated temperature–depth profile at the end of the 
experiment is found for an upward flow of − 1.5 × 10−5 m·s−1 
(blue scatters and solid orange line in Fig. 4d). This value 
is close to the true flow rate (− 1.3 × 10−5 m·s−1). Addition-
ally, the calculated temperature–depth profiles for a con-
tinuous time of the experiment (Fig. 4c) agree well with 
the measured results (Fig. 4a). As a result, through proper 

Table 2   Experimental 
conditions for the scenarios

Number Hydraulic condition Peclet number Temperature 
boundary (°C)

Basic form Flow rate (m·s−1) Layer 1 Layer 2 Upper Lower

1-1 Upward flow −1.3 × 10−5 14 39 20 3 ~ 3.5
2-1 Weak downward flow 8.2 × 10−8 0.1 0.2 3 19
2-2 3 → 30 19 ~ 20
2-3 30 20
3-1 Strong downward flow 3.7 × 10−5 41 110 30 20
3-2 4.2 × 10−5 46 125 30 20
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fitting of boundary and initial conditions, TempFlow can 
reliably estimate the flow rate and reproduce the heat trans-
port processes. This capability is further examined in the 
next step by modifying the flow rate and orientation in the 
other experimental scenarios.

Upward flow

In the following, we provide a more detailed analysis of Sce-
nario 1-1. Figure 5a, b show the initial temperature and its 
distribution after 550 min, respectively. Slight temperature 
differences between different measurement locations indi-
cate possible local unevenness of the layers in the tank and 
potential nonuniform vertical flow. The evolving relatively 
cold area along the flow direction thus spreads under the 
applied upward flow of −1.3 × 10−5 m·s−1.

Figure 5c shows all estimated flow rates using Temp-
Flow with an RMSE lower than 0.5 °C (Fig. 5d). Com-
paring the calculated flow rates of layer 1 and layer 2, the 
flow rates in layer 1 (− 3.8 × 10−6 m·s−1, averaging the 
result of HSFTs 1, 3, 5, 7, 8, and 9) are smaller than those 
in layer 2 (− 1.45 × 10−5 m·s−1), agreeing well with the 
setup of the experiment (K1 = 1.82 × 10−6 m·s−1 in layer 1, 
K2 = 2.73 × 10−6 m·s−1 in layer 2). The thickness of the soil 
layer may affect the estimated flow rates in layer 1, which 
are more uneven than those in layer 2 (HSFTs 2, 4, 6, and 
10). This highlights the potential influence of sediment layer 
thickness. Potential local unevenness may affect the percola-
tion pathway and thus the vertical temperature evolution. In 
thinner layers, a limited temperature change can be recorded, 
and the relative estimation error caused by potential local 
unevenness thus is higher.

Fig. 3   Role of temperature measurement errors for the flow rate esti-
mated with TempFlow: a temperature resolution (η); b temperature 
accuracy (T ± error); c finite instrument response time (δ); d spatial 

resolution (μ). The solid lines correspond to the flow rate estimates 
considering the temperature measurement error. The dotted lines cor-
respond to the resulting flow rate estimate errors (%)
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Based on the estimated flow rates for different positions 
and sediment layers, an average value is calculated by

(10)qaverage =
l1

l1 + l2

∑10

1
qi

10
+

l2

l1 + l2

∑10

1
qj

10

where l1 and l2 (cm) are the thicknesses of layer 1 and layer 
2. qi and qj (m·s−1) are the estimated flow rates in differ-
ent locations of the layers. The indices 1 to 10 correspond 
to the locations of the HSFTs. The average estimated flow 
rate (− 1.6 × 10−5 m·s−1) is approximately 30% higher than 

Fig. 4   a Experimental continuous temperature–depth data obtained by HSFT 2 in layer 2; b boundary conditions; c simulated temperature–depth 
evolution; d initial conditions and simulated temperature-depth profile. HSFT, high-resolution fiber-optic temperature sensing tube

Fig. 5   Upward flow with flow rates of − 1.3 × 10−5 m·s−1 for Scenario 1 (a, b); c and d show the estimated flow rates and corresponding RMSE
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the average flow rate (− 1.3 × 10−5 m·s−1) calculated by the 
outlet flow during the experiment.

Weak downward flow

In Scenario 2, the vertical flow is reversed, and conditions of 
groundwater recharge are reproduced in the tank. The exper-
iment is initiated with isothermal conditions (Fig. 6a) of 
12.8 °C. We apply only a small flow rate of 8.2 × 10−8 m·s−1, 
injected at 3 °C, and Fig. 6b illustrates the evolution of the 
cold front from the top after 1310 min. Thereby the bottom 
boundary is heated to 19 °C, which causes slight warm-
ing effects at the lower layer. There is no clear correlation 
between the direction of temperature changes and the down-
ward flow direction in these experiments with the imposed 
downward flow. The temperature change and flow direction 
are inconsistent under different temperature boundary con-
ditions (Fig. 6a, b, e, f, e, f). Here, the applied flow rate 
is too low, and the conditions in the tank are conduction-
dominated, indicated by the low Peclet number (0.1 and 0.2 
correspond to layers 1 and 2). Thus, the contribution of heat 
convection to heat transfer is difficult to distinguish, and 
assessing hydraulic conditions by the temperature change 
direction is difficult.

The average estimated flow rates using TempFlow are 
1.1 × 10−6 m·s−1, − 5.0 × 10−7 m·s−1, and 1.0 × 10−6 m·s−1 
for Fig. 6c, g, k, respectively. TempFlow can preliminar-
ily assess the flow direction in the 2-1 and 2-3 experiments 
based on the temperature data. However, the estimated 
flow rates are about ten times higher than the true flow rate 
(8.2 × 10−8 m·s−1) calculated by the water head. This dif-
ference is due to the prominent role of heat diffusion, and 
for such weak convection, temperature measurement errors 
or poor coupling between the HSFT and the soil can blur 
the thermal conditions in the tank. The scattered flow rates 
obtained by TempFlow also reveal that layer 1 exhibits a 
more variable flow rate than layer 2. The influence of sedi-
ment layer thickness is more significant when estimating a 
small flow rate. This confirms the findings of the previous 
section, where a small flow rate is difficult to be estimated 
by TempFlow.

The estimated flow rates in layer 1 (i.e., − 7.4 × 10−6 m·s−1) 
are opposite to those derived for layer 2 (i.e., 1.2 × 10−6 m·s−1) 
and the average flow rate (8.2 × 10−8 m·s−1). For the Scenario 
II variant with a fast-changing temperature boundary (2-2, 
the upper-temperature boundary rises from 3 °C to 30 °C in 
660 min), even more variable flow rates than for the 2-1 and 
2-3 experiments were derived, with outliers at the positions 
75 cm, 105 cm, and 135 cm (enclosed by the gray dashed 
box in Fig. 6g). These reveal the challenge of evaluating the 
flow rate under fast temperature variation conditions. Also, 
for related methods, it usually takes several days to use tem-
perature–time data (Rau et al. 2015). With TempFlow, thus, 

a longer experimental time would be beneficial for flow rate 
estimation.

Strong downward flow

In this scenario, a high downward flow was applied, and the 
thermal conditions after 162 min and 112 min were inspected 
for the two sequential experiments with 3.7 × 10−5 m·s−1 
(Scenario 3-1) and 4.2 × 10−5 m·s−1 (3–2). As depicted in 
Fig. 7b, the warm thermal front that rapidly evolves in 3-1 
is not horizontal. The temperature change recorded in some 
HSFTs is abnormally high, and local fingering is observed. 
After 3-1, a slightly higher flow rate is imposed in 3-2 with 
slightly recovered thermal conditions after the previous 
experiment (Fig. 7e). After another 112 min of vertical con-
vection, the tank is warmed up more with the uneven heat 
front moving further (Fig. 7f). Neglecting the local outli-
ers in the temperatures, the average flow rates estimated by 
TempFlow are 2.5 × 10−5 m·s−1 and 2.9 × 10−6 m·s−1 (com-
pared to 3.7 × 10−5 m·s−1 and 4.2 × 10−5 m·s−1), which are 
about 30% lower than the average flow rate calculated by the 
outlet flow. The HSFTs with extreme local temperatures at 
the positions of 15 cm, 105 cm, and 135 cm also correspond 
to unreal estimated flow rates (Fig. 7c, d, g, h, shown in the 
gray dashed box, RMSE > 0.5 °C). It is indicated from this 
experiment that the poor coupling between the HSFT and 
the sediment has a potential effect on the estimated flow rate, 
since it results in an inaccurate estimation of the flow rate 
in the sediments.

Discussion

The water flow affects the slope stability by contributing 
to the water pressure and the seepage force (j = iγw, where i 
is the hydraulic gradient in the ground and γw is the weight 
of water). For example, upward water flow, when the water 
level in the slope rises, generates a seepage force that 
increases the sliding resistance, which is favorable for the 
stability of the slope (Han et al. 2021). The sub-meter scale 
estimation of the water flow rate using the method proposed 
here allows for the seepage force calculation in different lay-
ers (j = qγw/K). Although significant efforts have been made 
to accurately resolve the seepage accurately in slopes (e.g., 
Ahmed et al. 2020; Zhu et al. 2020), this indirect method 
offers a new door for spatial and temporal resolution for 
water flow rates under diverse hydraulic and geological 
conditions.

The tank experiments conducted in different scenarios 
validated the novel method in the saturated zone with differ-
ent hydraulic conditions. The results indicate that TempFlow 
is robust to capture the vertical water flow within a broad 
range of conditions. The presented method can properly 
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estimate a flow rate larger than 1.0 × 10−6 m·s−1, consider-
ing the error analysis in the “Effect of temperature meas-
urement errors on estimated flow rate” section and the tank 
experiment results. A minor difference (< 30%) between the 

estimated flow rate and the flow rate calculated from outlet 
flow was identified, both for upward and downward flow. 
For lower flow rates, the roles of heat diffusion and measure-
ment errors become more relevant. The experiments with a 

Fig. 6   Weak downward flow with a flow rate of 8.2 × 10−8 m·s−1 for Scenario 2 (a, b, e, f, i, j); c, d, g, h, k, and l show the estimated flow rates 
and corresponding RMSE
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downward flow rate of only 8.2 × 10−8 m·s−1 demonstrate the 
difficulty, and if convective heat flow is small, experimental 
conditions such as uneven layering can be decisive for the 
thermal conditions evolving in the tank. A careful examina-
tion of the coupling between the HSFT and the ground is 
needed to avoid any local water flow. For instance, Vogt 
et al. (2010) introduced a setup-based Geoprobe® direct 
push system for well installing of PVC wrapped piezometer 
tubes (like the HSFT) in the streambed. Generally, within 
the application window, TempFlow well described the heat 
transfer in the sediments with a higher-order function fit 
and the numerical method. TempFlow could estimate the 
direction and extent of the water flow if the temperature 
change is recorded in a day scale. It is noted that Temp-
Flow meets limitations when evaluating flow rates below 
1.0 × 10−7 m·s−1, while such tiny flow has little influence on 
slope stability for the change of water level, and the seepage 
force is also ignorable. Rau et al. (2015) mentioned that the 
heat tracing method should consider the transient associated 

temperature signal. A longer observation time thus can help 
to reduce the uncertainty and decrease the estimation limit 
when estimating the flow rate.

For in situ application in a slope, the process of using 
TempFlow should be as follows: (1) first, information on sed-
iment stratification is required to be determined by drilling 
cores. (2) Second, the thermal regime of each sediment layer 
at different depths is then obtained from high-resolution ver-
tical temperature-depth profiles. (3) Third, TempFlow can be 
used to estimate water flow for each layer. Moreover, the cou-
pling between the temperature sensors and the soil should be 
seriously considered for better slope water flow estimation.

It should be noted that a complete refined evaluation of water 
flow in the depth direction of a slope should further consider 
two issues. One is that TempFlow provides the estimation of the 
vertical component of water flow, since an HSFT is vertically 
installed in the ground in this study. By heating the HSFT, the 
horizontal component can also be estimated. For example, Yan 
et al. (2015) proposed a new system with a carbon fiber heating 

Fig. 7   Strong downward flow with flow rates of 3.7 × 10−5 m·s−1 for Scenario 3-1 (a, b) and 4.2 × 10−5 m·s−1 for Scenario 3-2 (e, f); c, d, g, and 
h show the estimated flow rates and corresponding RMSE
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cable for measuring the flow rate in the radial direction of the 
cable. The other is that TempFlow allows multiparameter inver-
sion. It can also be used to evaluate the moisture distribution of 
the ground in the unsaturated slope zone.

Conclusions

This study proposes a convenient method for estimating verti-
cal water flow by using high-resolution temperature profiles. 
Flexible initial and boundary conditions allow users to easily 
match field conditions accurately and thus enhance the fidelity 
to physical processes. Because high-resolution temperature 
profiles allow the estimated flow rate to be finely scaled to the 
sub-meter, the method based on temperature–depth profiles 
would be worthwhile for refined slope stability research. Con-
sidering the above new features, TempFlow, developed in this 
manuscript, provides a powerful way to evaluate flow rate by 
only using temperature information. Using this method, users 
can obtain subsurface flow rates with passive DTS, whether 
monetary or environmental. TempFlow could suitably identify 
a flow rate above 1.0 × 10−7 m·s−1, and above 1.0 × 10−6 m·s−1 
is recommended to be calculated. Additionally, this method 
can assess the potential anomalous regions in a highly effec-
tive manner, which is of particular significance in the slopes 
with pronounced heterogeneity.

Regarding improving the performance of TempFlow, the 
following effort would be favorable: (1) obtaining thermo-
physical parameters of soil is the prerequisite for estimating 
water flow, but this usually adds error since it is difficult 
to obtain accurate thermophysical parameters; hence, less 
dependence on these parameters will benefit in reducing 
estimation errors. (2) Improving the quality of temperature 
measurements will also significantly improve the estimation 
of groundwater flows. Better performance of DTS demodu-
lators, proper sensor installation methods, and others are still 
challenging for future investigation.
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