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A B S T R A C T

Precise information about the spatial distribution of hydraulic conductivity (𝐾) in an aquifer is essential
for the reliable modeling of groundwater flow and transport processes. In this study, we present results
of a new inversion procedure for induced polarization (IP) data that incorporates petrophysical relations
between electrical and hydraulic parameters, and therefore allows for the direct computation of 𝐾. This
novel approach was successfully implemented for the Bolstern aquifer analog by performing synthetic IP
experiments with a combined surface and cross-borehole setup. From these data, the distribution of 𝐾 was
retrieved with high accuracy and resolution, showing a similar quality compared to images achieved by
hydraulic tomography. To further improve the quantitative estimates of 𝐾, we use synthetic pumping test
data to inform two novel calibration strategies for the IP inversion results. Both calibrations are especially
helpful for correcting a possible bias of the IP inversion, e.g., due to resolution limitations and/or to bias
in the underlying petrophysical relations. The simulation of tracer experiments on the retrieved tomograms
highlights the accuracy of the inversion results, as well as the significant role of the proposed calibrations.
1. Introduction

Tomographic methods have evolved as a promising family of hy-
drogeological field investigation techniques for imaging the hydraulic
conductivity (𝐾) distribution (Yeh and Liu, 2000; Vasco et al., 2000;
Jimenez et al., 2013; Zhao and Illman, 2018; Pouladi et al., 2021).
They rely on sending and recording multiple signals at different po-
sitions of an aquifer. By processing all signals together, the spatial
distribution of hydraulic parameters is reconstructed. The choice of a
tomographic configuration for identification of subsurface structures
is rooted in geophysical exploration (Gottlieb and Dietrich, 1995; Yeh
and Lee, 2007). Accordingly, tomographic concepts based on classical
hydrogeological field techniques with hydraulic stimulation or tracer
signals often adopt data inversion principles that are established in
geophysics (Hu et al., 2011; Kong et al., 2018; Ringel et al., 2021). Vice
versa, especially near surface geophysical techniques such as ground
penetrating radar, electrical resistivity tomography or electromagnetic
induction are tuned to not only identify geological but also hydraulic
structures (Slater, 2007; Linde et al., 2006; McLachlan et al., 2021).

Still, hydraulic or tracer tomography is not fully established in
practice. A major reason is the rather high experimental demand for
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installation of field equipment and borehole devices (Bohling and
Butler, 2010; Brauchler et al., 2013b; Cardiff et al., 2013; Klepikova
et al., 2020). Fast applicability in the field is an advantage of many geo-
physical techniques. However, a common shortcoming is that aquifer
heterogeneities are described by geophysical proxy parameters. As
classical geophysical exploration techniques do not test hydraulic prop-
erties directly, their capacity to provide meaningful hydrogeological
insight in aquifers is limited. Ideally, geophysical and hydrogeological
information is thus jointly processed for obtaining hydrogeophysical
tomograms to benefit from the advantages of both approaches (Irving
and Singha, 2010; Vilhelmsen et al., 2014; Ahmed et al., 2016).

In the growing research field of hydrogeophysics (Binley et al.,
2015) a strong focus is on electrical methods due to their ability of
sensing pore space properties that govern the hydraulic parameters (Re-
vil et al., 2012a; Wang et al., 2021). However, imaging hydraulic
conductivity requires the separation of pore volume and pore surface
properties, which cannot be achieved by conventional geoelectrical
methods. As a remedy, the additional information contained in induced
polarization (IP) measurements about electrical polarization effects at
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the pore–matrix-interface can be used to quantitatively separate these
properties (Slater, 2007).

To link the electrical parameters of IP measurements with the
hydrogeological parameters, we mainly rely on empirical relations
derived from laboratory measurements. The first quantitative relation
between IP parameters and 𝐾 was established by Börner et al. (1996).
Since then, a variety of other empirical laws has been derived by
spectral induced polarization (SIP) laboratory measurements (Slater
and Lesmes, 2002; Binley et al., 2005; Revil and Florsch, 2010; Titov
et al., 2010; Revil et al., 2012b; Attwa and Günther, 2013; Weller et al.,
2015; Robinson et al., 2018).

Most of the IP parameters that are valuable for estimating 𝐾 are de-
ined in the frequency domain, as e.g., the Cole–Cole parameters (Cole
nd Cole, 1941; Pelton et al., 1978), and can therefore be most easily
erived from SIP measurements. However, although some applications
f SIP in the field do exist (Kemna et al., 2012; Orozco et al., 2012;
allistl et al., 2018), this method is mainly used for the electrical
haracterization of rocks in the laboratory (Revil et al., 2014; Börner
t al., 2017; Römhild et al., 2019), whereas for field campaigns time
omain IP (TDIP) measurements are most common (Kemna et al., 2004;
azoty et al., 2012; Doetsch et al., 2015). This gap can be overcome
y using a Fourier transform within the IP inversion procedure, so
hat TDIP data can be inverted for frequency domain parameters, such
s Cole–Cole parameters (Fiandaca et al., 2012, 2013) or other re-
arameterizations of the Cole–Cole model (Fiandaca et al., 2018a). This
pproach yields results of a similar quality compared to frequency do-
ain measurements (Madsen et al., 2017), but often has an advantage

n terms of acquisition time (Maurya et al., 2018b; Martin et al., 2020).
In several studies, 𝐾 has already been estimated from these electri-

al parameters at field scale (Hördt et al., 2009; Attwa and Günther,
013; Maurya et al., 2018a). However, the petrophysical relations
entioned above have always been applied after the inversion for IP
arameters, making the interpretation in terms of hydraulic parame-
ers ambiguous. Instead, incorporating the petrophysical laws into the
nversion procedure allows the direct computation of the 𝐾-distribution

in the subsurface from the measured IP data. Although ambiguities
might also be reduced with strong structural priors such as training
images (Pirot et al., 2017), a petrophysical inversion approach can have
further advantages. By introducing a new parameterization, parameter
correlations can be reduced, and the direct inversion for 𝐾 makes
it easier to study its uncertainties and how data errors propagate to
model errors. It also allows to apply the regularization to the actual
hydraulic parameters instead of the electrical parameters and simplifies
the integration of prior models that are often given as a distribution of
𝐾. Petrophysical inversion strategies have already been applied in other
contexts, such as permafrost sites (Mollaret et al., 2020), gas hydrate
systems (Turco et al., 2021) or reservoir characterization (Gao et al.,
2012), but mostly with the aim of establishing a joint inversion.

While our new IP-𝐾 inversion approach has already been mentioned
briefly in conference abstracts (Fiandaca et al., 2021; Martin et al.,
2021), we now present the complete methodology and a detailed
assessment of the results for the first time. We are aiming to show
the abilities and limitations of this deterministic inversion for imag-
ing 𝐾-heterogeneities in near-surface aquifers by performing synthetic
modeling and inversion tests on aquifer analog data with a combined
surface and cross-borehole IP setup. We compare those results with
data derived from synthetic hydraulic tomography (HT) experiments
using a similar setup. Our main goal is to achieve a distribution of 𝐾
that would yield a correct solute transport simulation. For this purpose,
a straightforward calibration strategy of complementing IP inversion
with hydraulic information is introduced.

In the following, we briefly explain the methodological concepts of
IP and HT, as well as our new IP-𝐾 inversion approach. As the study
site for simulating a synthetic cross-hole HT and IP application, a sedi-
mentary aquifer analog is implemented to compare the abilities of the
two methods in imaging decimeter-meter scale 𝐾-heterogeneities with
varying point spacing. The performance of the new calibration strategy
is evaluated and all findings are discussed with special emphasis on the
2

applicability of the suggested methodology within field campaigns.
2. Materials and methods

Fig. 1 gives an overview of the procedures applied in this study.
The Bolstern aquifer analog (Heinz et al., 2003) serves as the input
data set for the forward modeling of IP data and the HT synthetic
experiments. The achieved data sets are then used for the respective
inversion (the new IP-𝐾 inversion procedure and an HT travel time
inversion). Additionally, we achieve an effective hydraulic conductivity
𝐾𝑒𝑓𝑓 as an average value for the whole domain by a small set of seven
pumping tests and use it to calibrate our inversion results. To assess the
quality of those calibrations and the performance of the two methods
in general, we finally conduct tracer transport simulations with the
achieved 𝐾 tomograms and evaluate them based on imaged tracer
plumes as well as depth-integrated tracer breakthrough curves.

2.1. Bolstern aquifer analog

The Bolstern aquifer analog data set (Heinz et al., 2003) was derived
from an outcrop analog study of fluvial deposits located near Bolstern
(SW-Germany, see Fig. 2a) within the paleo-discharge zone of the Rhine
glacier. The analog study comprises a rectangular 20 m × 7 m 2D cross-
section (Fig. 2b), which is built up by a mosaic of hydrofacies units that
were delineated from the outcrop wall at a resolution of 0.05 m. The
hydrofacies units represent nearly hydraulically homogeneous units
with 𝐾 derived from grain size analysis, as well as porosity information.
The hydrofacies accord with the sedimentary lithofacies, and this is
reflected in the structural features of the analog, with heterogeneous
layers and cross beddings as a common characteristic for many sedi-
mentary unconsolidated aquifers. The Bolstern analog has already been
used as a realistic test case for modeling contaminant transport in
previous work (Höyng et al., 2015).

We use a section of the whole analog between 𝑥 = 0 m and 12 m
which corresponds to 𝑥 = 6 m and 18 m in the original nomenclatures
f Heinz et al. (2003)), covering the whole depth range from 𝑧 = 0 m to
7 m (red rectangle in Fig. 2b). For all simulated virtual experiments
e assume to have three boreholes at 𝑥 = 3 m, 6 m and 9 m (black

ines in Fig. 2b).

.2. Induced polarization

.2.1. Electrical rock properties
The electrical conductivity 𝜎∗ of a rock is generally considered to be

frequency-dependent and complex-valued quantity (Olhoeft, 1985)
∗(𝜔) = 𝜎𝑒𝑙 + 𝜎∗𝑖𝑛𝑡(𝜔) (1)

consisting of electrolytic conductivity 𝜎𝑒𝑙 and interface conductivity
𝜎∗𝑖𝑛𝑡, with 𝜔 = 2𝜋𝑓 being the angular frequency and the ∗ denoting
complex quantities. It can be written in terms of real and imaginary
part (𝜎′ and 𝜎′′, respectively) or as magnitude |𝜎∗| and phase angle 𝜑

𝜎∗(𝜔) = 𝜎′(𝜔) + 𝑖𝜎′′(𝜔) = |𝜎∗| ⋅ 𝑒𝑖𝜑, (2)

where 𝑖 is the imaginary unit. The electrolytic part is controlled by
the conduction through a rock’s pore space and thus depends on pore
volume properties as described by Archie’s Law (Archie, 1942)

𝜎𝑒𝑙 =
𝜎𝑤
𝐹

= 𝜙𝑚 ⋅ 𝜎𝑤, (3)

where 𝜎𝑤 is the pore water conductivity, 𝐹 = 𝜙−𝑚 is the formation
actor, 𝜙 is porosity and 𝑚 is the empirical cementation exponent. This

formulation assumes fully saturated conditions.
The interface conductivity 𝜎∗𝑖𝑛𝑡, however, may contain contributions

from a variety of electrical polarization phenomena that are mainly
related to the interface between rock matrix and pore space. If elec-
tronically conductive minerals, such as graphite or pyrite, are absent,

as it is mostly the case in sedimentary environments, diffusion-related
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Fig. 1. Workflow for imaging 𝐾 in heterogeneous aquifers with induced polarization (IP, left section) and hydraulic tomography (HT, right section). Blue boxes represent any
type of data and black boxes contain the different processing steps. The green labels refer to the other figures in this work.
polarization connected to the electrical double layer (EDL) at the pore–
matrix-interface is dominant (Marshall and Madden, 1959; Schwarz,
1962).

While standard geoelectrical methods are only sensitive to the real
part 𝜎′ of the electrical conductivity, IP measurements can retrieve
information about the imaginary part 𝜎′′ as well. This is either done
by conducting spectral induced polarization (SIP) measurements in
the frequency domain and then converting the magnitude and phase
angle information to a complex electrical conductivity, or by per-
forming time domain induced polarization (TDIP) measurements and
full-decay spectral inversion (Fiandaca et al., 2012, 2013; Madsen et al.,
2020). We will focus on the latter option since the acquisition time
is smaller in the field (Maurya et al., 2018b) and a good retrieval of
spectral properties is achievable when a wide time range is used in
acquisition (Madsen et al., 2017), for instance through the analysis of
full-waveform recordings (Olsson et al., 2016).

A typical TDIP field setup is similar to a standard DC geoelectrics
setup with a sequence of quadrupoles injecting a current with two
electrodes (A, B) and measuring the resulting voltage with two other
electrodes (M, N). A simplified setup is shown in Fig. 3a. The sequence
is typically distributed along a 2D profile on the surface, e.g., following
a gradient protocol (i), and can be complemented by cross-borehole
measurements (ii) or quadrupoles in a single borehole (iii). For the
3

synthetic experiments carried out within this study, a combination of
the three options shown in Fig. 3a is used, but a variety of other
sequences is possible (Bing and Greenhalgh, 2000). While surface IP
measurements are becoming a more widely used method, field exam-
ples of cross-borehole IP are still rare (Kemna et al., 2004; Binley et al.,
2016; Bording et al., 2019).

To extract meaningful parameters from IP data, the Cole–Cole
model is commonly used to describe the spectral behavior of 𝜎∗ (Cole
and Cole, 1941; Pelton et al., 1978; Tarasov and Titov, 2013):

𝜎∗(𝜔) = 𝜎0

[

1 +
𝑚0

1 − 𝑚0

(

1 − 1
1 + (𝑖𝜔𝜏𝜎 )𝑐

)]

. (4)

Here, 𝜎0 is the DC conductivity, 𝑚0 the intrinsic chargeability as
defined by Seigel (1959), 𝜏𝜎 the relaxation time and 𝑐 the frequency
exponent.

Based on petrophysical relations found in laboratory studies, the
electrical properties of a rock can be used to predict hydraulic conduc-
tivity 𝐾. In the following, we make use of two different approaches.
First, Revil et al. (2012b) found a relation for permeability 𝑘 (and hence
hydraulic conductivity 𝐾) based on relaxation time 𝜏𝜎 , formation factor
𝐹 and the diffusion coefficient of the Stern layer 𝐷+:

𝑘 =
𝜏𝜎𝐷+ . (5)

4𝐹
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Fig. 2. (a) Location of the Bolstern aquifer analog in SW-Germany and (b) visualization of the data set as a 2D cross-section including the heterogeneities of hydraulic conductivity
𝐾 and porosity 𝜙. The red rectangle indicates the section of the data set used in this work and the black lines represent the three hypothetical boreholes at 𝑥 = 3 m, 6 m and
9 m.
A powerlaw fit of 𝑅2 = 0.88 was reported for the used set of clean
saturated sand samples. The relation is based on the idea that 𝜏𝜎 can
be treated as a measure for typical scale lengths (e.g., pore throat
size), that in return govern the hydraulic conductivity. The volumetric
properties are accounted for by 𝐹 as a measure for effective porosity.
At first sight, this approach does not include any empirical parameters
and should be straight-forward to use. However, while 𝜏𝜎 and 𝐹 can be
directly derived from the IP measurements, the diffusion coefficient 𝐷+
can only be estimated, typically depending on the clay content. Revil
et al. (2015) give the following values for clean sand and clay:

𝐷+,𝑠𝑎𝑛𝑑 = 1.3 ⋅ 10−9 ⋅ m s−2, (6)

𝐷+,𝑐𝑙𝑎𝑦 = 3.8 ⋅ 10−12 ⋅ m s−2. (7)

However, other laboratory findings are raising doubt about the
existence of two distinct values for 𝐷+ (Weller et al., 2016). Instead,
an apparent diffusion coefficient 𝐷𝑎 can be introduced that may cover
a much wider range of values, although its physical significance re-
mains unclear. In our study, in which sand–clay mixtures are actually
reflected in a wide range of 𝐾-values, we still use the two values
given by Revil et al. (2015) to compute a distribution of 𝐷+ directly
from 𝐾 by imposing an interpolation in logarithmic space. However,
the purpose of this simplification is only the simulation of realistic
𝜏𝜎 -values (according to Eq. (5)) within the forward modeling.

The second petrophysical approach was introduced by Weller et al.
(2015). It uses the formation factor 𝐹 and the imaginary part 𝜎′′
4

evaluated at a frequency of 1 Hz for permeability estimation:

𝑘 = 𝛼
𝐹 𝛽 (𝜎′′(1 Hz))𝛾

(8)

with the empirical parameters 𝛼 = 1.08 ⋅ 10−13, 𝛽 = 1.12 and 𝛾 = 2.27
for unconsolidated and fully saturated sediments. The coefficient of
determination is reported as 𝑅2 = 0.862 and an additional degree of
uncertainty lays in the applicability of the empirical parameters 𝛼, 𝛽
and 𝛾 in the given geological setting.

Furthermore, we use a relationship between imaginary and real part
of surface conductivity found by Weller et al. (2013):

𝜎′′(1 Hz) = 𝑙 ⋅ 𝜎′𝑖𝑛𝑡(1 Hz) (9)

with 𝑙 = 0.042 ± 0.022, but imposing the relation at the frequency
𝑓 = (2𝜋𝜏𝜎 )−1 (Fiandaca et al., 2018b).

Finally, the conversion from permeability 𝑘 to hydraulic conductiv-
ity 𝐾 can be achieved by

𝐾 =
𝑑 ⋅ 𝑔
𝜂

⋅ 𝑘, (10)

where 𝑑 is the density of the pore fluid, 𝑔 the gravitational acceleration
and 𝜂 the dynamic viscosity of the pore fluid. Assuming a groundwater
temperature of 10 ◦C we use the approximation

𝐾 = 7.5 ⋅ 106 ⋅ 𝑘. (11)

For more details on the petrophysical background we refer to Fian-
daca et al. (2018b) and the references therein.

Clearly, all petrophysical laws between hydraulic and electrical
parameters are only approximations that bear a significant amount of
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Fig. 3. Comparison of induced polarization (left section) and hydraulic tomography (right section) experimental setups as well as simplified input and output signals. (a) Typical
IP setup with current electrodes A, B and voltage electrodes M, 𝑁 distributed (i) on a surface profile, (ii) as a cross-borehole setup or (iii) in a single borehole. (b) Typical HT
setup with source points S1... S𝑁 (pumping locations) in the left borehole and receiver points R1,1... R2,𝑁 (observation locations) in the two other boreholes. (c) Input signal of the
injected current: rectangular function with alternating polarity. (d) Observed voltage signal: decay curves reacting to the injected current and the polarization effects in the rock’s
pore space. (e) Pumping signal in the source points following a Heaviside function. (f) Observed pressure response curves at the receiver points with peak time 𝑡𝑝𝑒𝑎𝑘 and early
time 𝑡𝛼,ℎ according to the 10%-diagnostics approach.
uncertainty. Additionally, due to the regularization applied within the
inversion, the petrophysical relationships of the tomograms are also
resolution-dependent (Hermans and Irving, 2017). Although we will
show how these regularization-induced errors as well as a simple bias
in the petrophysical relations can partly be corrected by our proposed
calibrations, their intrinsic scatter can barely be reduced by these pro-
cedures. Especially in strongly heterogeneous aquifers (like the Bolstern
aquifer) this uncertainty can be significant, easily spanning one to two
orders of magnitude (e.g., Hördt et al. (2009)). In addition, further
parameters (like the cementation exponent 𝑚) that are approximated
as constants, might be spatially variable (Schön, 2015; Yue, 2019).
Therefore, petrophysical relations actually present in the field are often
far from the laws derived in the lab (e.g., Benoit et al. (2019)), so that
not only the inherent uncertainty, but also the applicability of those
relations in a given field setting are limiting factors for the quality of
the inversion result. Synthetic experiments should always be regarded
as best case scenarios showing the upper limit of 𝐾-prediction quality
that may be achieved in a field application. However, even best-case
scenarios are anything but trivial, and insights from synthetic studies
5

are important means to judge the role of procedural assumptions for an
inversion and the resolution capability of the proposed methods.

2.2.2. Forward modeling
For defining the input data set used within the forward simulation,

the WhyCDF model space

𝐦𝑊 ℎ𝑦𝐶𝐷𝐹 = {𝜎𝑤, 𝐾,𝐷+, 𝐹 , 𝑐} (12)

was used. The WhyCDF acronym indicates the model parameters,
i.e. water and hydraulic conductivity 𝜎𝑤 and 𝐾, respectively, diffusion
coefficient 𝐷+ and formation factor 𝐹 (the frequency exponent 𝑐 is not
specified in the acronym). The idea of re-parameterizing the model
space is based on Fiandaca et al. (2018a), now being extended by
directly imposing the petrophysical relations (Eqs. (1), (2), (4), (5), (8),
(9) and (11)) onto the objective function. Therefore, the conversion
from hydrological to electrical parameters is part of the modeling pro-
cess and not a separate procedure. The two petrophysical approaches
by Revil et al. (2012b) and Weller et al. (2015) are simultaneously used
by forcing them to yield the same permeability 𝑘. The five different
input parameters were set up in the following way:
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• Water conductivity 𝜎𝑤 was assumed to be constant at 100 mS/m,
which is a realistic value for groundwater (Schön, 2015).

• Hydraulic conductivity 𝐾 was directly imported from the Bolstern
data set (Heinz et al., 2003).

• The diffusion coefficient 𝐷+ was derived from 𝐾 by interpolation
in log-space from the sand–clay values suggested by Revil et al.
(2015), thereby imposing realistic 𝜏𝜎 -values on the data.

• The formation factor 𝐹 was computed from the porosity infor-
mation contained in the Bolstern data set by assuming a con-
stant cementation exponent of 𝑚 = 1.3 as a realistic value for
unconsolidated sediments (Schön, 2015).

• The frequency exponent of the Cole–Cole model 𝑐 was assumed
to be constant at 0.5.

The full data set (hydraulic conductivity 𝐾, diffusion coefficient 𝐷+
and bulk conductivity 𝜎0 including both 𝐹 , 𝜎𝑤 and 𝜎′𝑖𝑛𝑡) is shown in
Appendix B.

The synthetic IP experiments are based on a setup consisting of one
surface profile over the entire length of the data set (𝑥 = 0 ... 12 m)
as well as electrodes in three hypothetical boreholes at 𝑥 = 3 m, 6 m
and 9 m. We consider this to be a realistic setup within a field study
that should allow resolving the heterogeneities of the aquifer within the
whole domain. Furthermore, the same setup of boreholes is expected
to work well for HT, so that the results of the two methods can be
compared directly. In practice, the same boreholes could be used to
conduct all the experiments.

To simulate realistic field conditions, Gaussian noise of 2% and 10%
magnitude was added after the forward simulation to resistivity and
IP data, respectively. Field data can mostly be fitted with this level
of error, as for instance demonstrated in Maurya et al. (2018a). Some
exemplary decay curves with added noise and error bars of the assumed
standard deviation model are depicted in Appendix B.

We run the forward simulation in 2D following Fiandaca et al.
(2013) with three different electrode spacings - 1 m, 0.5 m and 0.25 m
- to assess the impact of varying spacings on the inversion (in terms
of computational performance and ability to image 𝐾-heterogeneities).
The sequence follows a commonly used gradient protocol for the sur-
face profile and borehole quadrupoles according to the cases (i), (ii)
and (iii) shown in Fig. 3a, with IP time gates ranging from 0.003 s to
12 s. The total number of quadrupoles (from which the total duration
of a field experiment might be estimated) are 162 for 1 m spacing, 885
for 0.5 m spacing and 2866 for 0.25 m spacing.

2.2.3. Inversion
The inversion was performed in the ThyCD model space

𝐦𝑇ℎ𝑦𝐶𝐷 = {𝜎0, 𝐾,𝐷+, 𝑐} (13)

consisting of total (DC) conductivity 𝜎0, hydraulic conductivity 𝐾, dif-
fusion coefficient 𝐷+ and frequency exponent 𝑐. All four parameters are
pace-dependent and uncoupled during the inversion, but the spatial
ariability of each parameter can be adjusted by setting horizontal and
ertical constraints.

While a model space with five parameters (like WhyCDF) is con-
enient as input for a forward simulation, it is not possible to invert
or both the formation factor and the water conductivity, since the
ffects of both parameters on DC conductivity cannot be separated.
onsequently, the water conductivity is considered a prior informa-
ion in the inversion, and the total DC conductivity is used for the
arameterization of the inversion result. This choice is supported by
he results of Markov chain Monte Carlo modeling performed with
ifferent parameterizations (Fiandaca et al., 2021), where the ThyCD
odel space turned out to be the most suitable and is therefore used

or this work. Again, it should be stressed that the conversion from
lectrical to hydrological parameters is an inherent part of the inversion
6

nd not a separate procedure. 𝐊
Although we refer to the diffusion coefficient as 𝐷+ here, it might
lso be interpreted as an apparent diffusion coefficient 𝐷𝑎 (Weller et al.,
016) in the inversion results. We also performed additional inversion
ests with a different model space, where 𝐷+ is replaced by 𝜏𝜎 , so that
q. (5) (Revil et al., 2012b) is actually not used. The distribution of 𝐾
emains almost identical, which shows that Eq. (8) (Weller et al., 2015)
lone can also be sufficient for the inversion of TDIP data.

The data space of the inversion consists of the DC data and the
ull decays of the quadrupole sequence. The objective function, which
ontains the squared data misfit and smoothness regularization terms
or vertical and horizontal constraints, is minimized through a iterative
auss–Newton approach (Fiandaca et al., 2013).

We ran all the codes on a standard desktop PC with an 8-core
7-9700K 3.6 GHz processor and 32 GB RAM. The runtime for one
teration is about one minute for the 1 m spacing electrode sequence,
–8 min for the 0.5 m sequence and around 30 min for the 0.25 m
equence, which adds up to a total inversion runtime of several hours
depending on the number of iterations) in the last case. This shows that
lso the inversion of field data can mostly be conducted on standard PC
quipment.

.2.4. Calibration with hydraulic data
Identification and resolution of 𝐾-heterogeneity is in particular

elevant for performing transport modeling. Therefore, it is especially
rucial to obtain accurate 𝐾-estimates in the preferential flow paths
nd thus in areas of high 𝐾. However, the strongest IP signal (e.g., in
erms of chargeability) is typically measured in materials with low

since they have a higher inner surface area and therefore a more
ronounced polarization connected to the EDL. In contrast, in the
igh-𝐾-zones the IP signal is relatively weak, so that the 𝐾-estimates
n the preferential flow paths are less supported by the IP data and
ight be less accurate. Considering these unfavorable properties of IP,

esulting tomograms may resolve structural features very well but they
re not very reliable with respect to the hydraulic characterization of
referential flow paths. Additionally, the uncertainties of the petro-
hysical relations linking electrical and hydraulic properties, as well
s regularization effects might produce a bias in 𝐾-prediction. As a
emedy, we suggest calibrating the IP inversion result by incorporating
nformation gathered from pumping test data.

In the synthetic example, we retrieve the effective hydraulic con-
uctivity 𝐾𝑒𝑓𝑓 as a single value for the whole domain by performing
ynthetic pumping tests on the Bolstern data set using Feflow. The pro-
edure is inspired by the approach of Wu et al. (2005). A setup of seven
umping locations in the left borehole and seven observation points
n the right borehole is used (see Appendix A, part c). The pumping
ests are carried out in exactly the same way as the HT experiments
see Section 2.3.2). Additionally, we set up a model with homogeneous

and perform the same experiments. The optimal 𝐾-value of the
omogeneous model is chosen by minimizing the cumulative RMS-
isfit when comparing these hypothetical pressure response curves
ith those of the Bolstern data set (‘‘benchmarking’’). We consider the
alue for 𝐾 producing the smallest misfit to be the effective hydraulic
onductivity 𝐾𝑒𝑓𝑓 and found the following value for the Bolstern

aquifer analog:

𝐾𝑒𝑓𝑓 = 7 ⋅ 10−5 m
s . (14)

In practice, 𝐾𝑒𝑓𝑓 may be inferred from the transmissivity that is
estimated by conducting a single standard pumping test at the site.

We suggest two different approaches to use 𝐾𝑒𝑓𝑓 for calibrating
he IP inversion results: (i) calibration with a constant factor (factor
alibration) and (ii) calibration with a flexible calibration matrix using
n exponential relationship (exponential calibration).

The first option consists of a simple multiplication of the inversion
esult 𝐊𝐈𝐏 with the calibration coefficient 𝐶, so that the geometric mean
f the calibration result 𝐊𝐟𝐚𝐜 will be equal to 𝐾𝑒𝑓𝑓 :

= 𝐊 ⋅ 𝐶, (15)
𝐟𝐚𝐜 𝐈𝐏
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𝐶 =
𝐾𝑒𝑓𝑓

𝑚𝑒𝑎𝑛(𝐊𝐈𝐏)
. (16)

This calibration is based on the assumption that 𝐾𝑒𝑓𝑓 should be
lose to the geometric mean of the 𝐾-values of the original data set
𝑜𝑟𝑖𝑔 (considering only the inner part between the boreholes), which

or the Bolstern aquifer analog is found to be

𝑒𝑎𝑛(𝐊𝐨𝐫𝐢𝐠) = 3.75 ⋅ 10−5 m
s . (17)

𝐾𝑒𝑓𝑓 is slightly higher than this value, because it is typically more
sensitive to the preferential flow paths (and therefore to areas with
high 𝐾), especially in a highly anisotropic medium with pronounced
horizontal layering as present in the Bolstern aquifer. However, we
would still propose using the geometric mean of the 𝐾-field since this
does not require any a priori assumptions about structural features or
anisotropy in a field setting.

The exponential calibration attempts taking into account the differ-
ent sensitivities of IP experiments and pumping tests by introducing
a flexible calibration matrix 𝐂𝛼 . The concept of this approach is vi-
sualized in Appendix A, already including the results for different
parameterizations. The calibration matrix is made up by

𝐂𝛼 = 𝑒𝛼⋅𝐊𝐈𝐏 (18)

and the calibration result 𝐊𝐞𝐱𝐩 is achieved by computing the Hadamard
product between 𝐂𝛼 and the inversion result 𝐊𝐈𝐏:

𝐊𝐞𝐱𝐩 = 𝐂𝛼◦𝐊𝐈𝐏. (19)

For low 𝐾-values (strong IP effect), the elements in 𝐂𝛼 will be close
to one, so that the inversion result is not changed by the calibration,
whereas for higher 𝐾-values (weak IP effect) the impact of the cali-
bration generally becomes stronger. However, the overall strength and
direction of the calibration is determined by the exponent 𝛼, which is
chosen according to the pumping test data. We iterate over a wide
range of values for 𝛼 in order to minimize the misfit between the
geometric mean of the calibration result 𝐊𝐞𝐱𝐩 and 𝐾𝑒𝑓𝑓 .
|

|

|

|

𝑚𝑒𝑎𝑛
(

[𝐊𝐞𝐱𝐩]100%𝜉

)

−𝐾𝑒𝑓𝑓
|

|

|

|

𝛼∈R
←←←←←←←←←←←←←←←←←←→ 𝑚𝑖𝑛! (20)

Since 𝐾𝑒𝑓𝑓 is often higher than the actual geometric mean of 𝐾
as shown above for the Bolstern aquifer), we do not use the whole
ata set to compute the geometric mean within this calibration, but
eglect a certain percentile 𝜉 with the lowest 𝐾-values. The impact of 𝜉
s visualized in Appendix A: for very low values (close to 0%) the result
s likely to be over-corrected, whereas for too high values an under-
orrection will occur. However, we find that the optimal percentile 𝜉
an be estimated by visual assessment of the uncalibrated inversion
esult, and the function 𝛼(𝜉) as shown in part (b) of Appendix A allows
or an evaluation of the impact of different 𝜉-values on the calibration
esult. Typically, the optimal value for 𝜉 will rise with increasing
lectrode spacing since smoothing effects lead to more extensive areas
f low 𝐾. We finally choose 𝜉 = 30% for 0.25 m spacing, 𝜉 = 35% for
.5 m spacing and 𝜉 = 50% for 1 m spacing. Undoubtedly, this choice
s to some extent subjective, and more experience and testing will be
eeded to choose the best value for 𝜉 in other applications.

.3. Hydraulic tomography

.3.1. General concept
Hydraulic tomography (HT) requires hydraulic stimulation (e.g.,

umping or slug tests) with several observation points at different
ocations to generate a tomographical configuration, similar to many
eophysical tomography methods (Fig. 3b). The pressure response mea-
ured at the observation point is used to invert the stratigraphic struc-
ure, i.e. the spatial distribution of hydraulic diffusivity, hydraulic con-
7

uctivity and specific storage. The main inversion algorithms consist t
f geostatistics-based and travel time-based methods. The geostatis-
ical methods for HT inversions can be predicated on a variety of
lgorithms, including simultaneous successive linear estimator (Berg
nd Illman, 2011; Yeh and Liu, 2000), quasi-linear estimator (Cardiff
t al., 2020; Kitanidis, 1995) or ensemble Kalman filter (Sánchez-
eón et al., 2020). A common feature of these approaches is that
hey require a priori geostatistical models to assume the spatial cor-
elation of the hydraulic parameters. In contrast, travel time methods
sed for HT inversion (Brauchler et al., 2003, 2013a) are based on
n eikonal equation, which is transferred from the groundwater flow
quation (Vasco et al., 2000) and can be solved by ray-tracing or
article tracking techniques. Compared to the first class of methods,
his approach requires much less computational effort since it does not
imulate in a complete groundwater flow model. Additionally, it does
ot require any prior assumptions about the geostatistical model, which
an be highly uncertain due to the sparse measurements and various
pplication scales. However, the travel time-based approach has lim-
tations in reproducing the hydraulic parameters in low-permeability
reas due to the low ray coverage. Although many studies prove that
he structure of the formation can be readily reconstructed, a sequential
nversion scheme is still required for a more accurate quantification of
he hydraulic parameters (Hu et al., 2015, 2011; Jimenez et al., 2013).

.3.2. Forward modeling
The synthetic HT experiments were simulated using the software

eflow (Diersch, 2014). The model domain was discretized by irregular
riangular meshing. The initial hydraulic head in the whole domain is
et to zero and we apply constant-head boundaries at the two sides. The
ydraulic conductivity values were assigned to the mesh according to
he values of the Bolstern aquifer analog, whereas the specific storage
oefficient was assumed to be homogeneous at 𝑆𝑠 = 10−4 m−1 according
o typical values found in literature (Kuang et al., 2020). Source points
ere placed at the hypothetical borehole at 𝑥 = 3 m, whereas receiver
oints were placed at 𝑥 = 6 m and 𝑥 = 9 m. Three different scenarios

were simulated with varying vertical spacing of respectively 0.25 m,
0.5 m and 1 m within the boreholes. Therefore, the setups are similar
to the IP experiments and the quality of the results can be directly
compared. At the receiver points, the hydraulic head was recorded
during the pumping tests, which are sequentially carried out from top
to bottom. The pumping signal is a Heaviside function with a constant
rate of 1 l/s, as shown in Fig. 3e.

The resulting pressure response curves were imported to Matlab for
further processing. All source–receiver-combinations with a ray path
angle larger than 60◦ were filtered out since the layered stratigraphy
typical for a shallow porous medium can be better resolved by reducing
those large-angle ray paths (Brauchler et al., 2007). The 10% diag-
nostic (Brauchler et al., 2003) is selected for the inversion, meaning
that the early time 𝑡𝛼,ℎ is picked where the derivative value reached
10% of the maximum derivative at the observation point (Fig. 3f).
Hence, the data space consists of all source and receiver coordinates
(except the filtered ones) as well as the respective early times. The
travel time information was contaminated with a noise level of 3%,
similar to Doetsch et al. (2010) and Hu et al. (2017).

2.3.3. Inversion
Hydraulic travel time of a pumping test is defined as a line integral

in which the pumping-induced pressure is generated at the source point
𝑥1 and travels along the path 𝜀 before reaching the receiver point 𝑥2:
√

𝑡𝛼,ℎ = 1
√

6𝑓𝛼,ℎ ∫

𝑥2

𝑥1

𝑑𝜀
√

𝐷(𝜀)
, (21)

where 𝑡𝛼,ℎ is the early time and 𝑓𝛼,ℎ is a conversion factor (Brauchler
t al., 2003). The subscript ℎ indicates the usage of a Heaviside source.
imilar to the seismic travel time inversion, Eq. (21) is resolved using
ay tracing techniques, and the inverted slowness can be converted to

he hydraulic diffusivity 𝐷. In this study, the open-source framework
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pyGIMLi is utilized to invert the hydraulic travel times, which is based
on the generalized Gauss–Newton method (Rücker et al., 2017; Günther
et al., 2006) and where the forward operator for calculating the travel
times uses Dijkstra’s algorithm (Dijkstra, 1959). As a final step, we
use the factor calibration approach introduced for IP to translate the
achieved diffusivities 𝐃 to a hydraulic conductivity distribution 𝐊𝐇𝐓
hat is in agreement with 𝐾𝑒𝑓𝑓 . This procedure replaces the common
pproach of multiplying with a specific storage coefficient 𝑆𝑠 (𝐾 =
⋅ 𝑆𝑠), which is typically also assumed as homogeneous.

.4. Tracer experiments

We want to assess the quality of the inversion results by performing
ynthetic tracer experiments using the achieved 𝐾-images and compare
he results to those obtained by modeling with the original Bolstern
ata set.

The corresponding simulations were conducted using Feflow in the
rea between the hypothetical boreholes (𝑥 = 3 m ... 9 m). Steady-state
ydraulic conditions were assumed, and constant heads assigned to the
odel boundaries induce a hydraulic gradient of 0.001 between the

nflow and outflow borders. A conservative tracer was injected as a
ypothetical line source with a constant rate of 1 mg/l at the upstream
order of the model domain (𝑥 = 3 m, left borehole). The longitudinal
nd vertical transverse dispersivities were set to 2.5⋅10−2 m and 2.5⋅10−4

, respectively, according to the values given in Höyng et al. (2015).

. Results

.1. HT and IP inversion results

Fig. 4c gives an overview of all the inversion results for the different
ethods and spacings. The original Bolstern data set is given at the top

Fig. 4a), where the grey numbers (1)–(5) indicate the most important
ighly permeable layers. Those layers are only subjectively defined to
ake it easier to refer to certain features in the text, but we will also

how that they are responsible for the major tracer fingers found in
he transport simulation presented below. Also note that the 𝐾-images
erived from HT comprise only the domain between the boreholes
between 𝑥 = 3 m and 𝑥 = 9 m), whereas IP has the ability to image
reas left and right of that domain as well, although with decreasing
ensitivity. We show all the inversion results as images of 𝐾 to allow a
irect comparison.

The HT travel time inversion produced meaningful results that
eveal the most important structures and overall good estimates of
. With 0.25 m and 0.5 m spacing, all the highly permeable layers

1)–(5) can be reconstructed at the correct locations and with well-
stimated 𝐾-values. However, smaller heterogeneities, as e.g., within
ayer (2), cannot be resolved and some inversion artifacts are visible
n the results, as e.g., a decrease in 𝐾 in the direct vicinity of the left
orehole. The inversion result for 1 m spacing misses the uppermost
ayer (1) since no source and receiver locations are present in this
art of the aquifer. However, the other layers (2)–(5) are still visible,
lthough smoothing effects are becoming more pronounced.

The travel time inversion typically yields integrated values along the
ifferent ray paths, which in our case produces an offset between 𝐾-
alues left and right of the central borehole. Although the general trend
f the major layers is correct and the inversion results reflect the true
ehavior of the original data set, local 𝐾-heterogeneities are not always
ttributed to the exact location, but are smeared along the respective
ection of the ray path, creating a sharp border at the central borehole.

For IP we show the uncalibrated results for 𝐾 as well as the images
chieved by the new factor calibration and exponential calibration
rocedures. Note that the ThyCD inversion of IP data always yields a
et of parameters, of which only 𝐾 is shown in Fig. 4. An example of
8

he complete set of parameters is given in Appendix B. t
Firstly, we focus on the uncalibrated IP results. With 0.25 m elec-
rode spacing, the aquifer heterogeneities are correctly reconstructed
n terms of structural behavior and 𝐾-quantification. The highly per-
eable layers (1) - (4) are clearly retrieved by the inversion, but layer

5) can hardly be reproduced. Obviously, the sensitivity in this lowest
art is small due to a very limited number of quadrupoles. However,
hen it comes to resolving smaller heterogeneities within the layers,

P yields slightly better results than HT and the attribution of certain
-heterogeneities to their exact location is more reliable.

When increasing the electrode spacing, smoothing effects intro-
uced by the regularization become more pronounced and this effect is
uch stronger compared to the HT results. During IP measurements,

ne quadrupole integrates over an area of at least three times the
pacing also in vertical direction, whereas for HT the integrative be-
avior is mainly related to the horizontal direction (along the ray path).
herefore, HT can resolve the borders between horizontal layers quite
ell, while this becomes much more difficult for IP. Another effect of

he regularization is that the 𝐾-values, especially in the highly perme-
ble layers, are typically under-estimated for larger electrode spacing.
herefore, we cannot expect to achieve correct transport simulations
sing those results. This can be overcome by using the new calibration
rocedures employed in the following.

The factor calibration leads to an overall increase in 𝐾 for all three
pacings since the value for 𝐾𝑒𝑓𝑓 is higher than the geometric mean of
he inversion results. This yields an improvement in 𝐾-estimation es-
ecially for the larger spacings (0.5 m and 1 m), where the 𝐾-values of
he most permeable layers are now predicted more correctly. However,
n over-estimation of 𝐾 can be observed in the less permeable zones.
his drawback can be overcome by the exponential calibration, which

eaves the lowest 𝐾-values unchanged and only adjusts the permeable
ones to the pumping test data, as described in Section 2.2.4. This effect
s clearly visible in the results: now the 𝐾-estimates are very close to the
riginal data set in all parts of the aquifer and for all three spacings. The
xponential calibration typically sharpens the contrast of the resulting
mage, thereby diminishing the smoothing effects especially for larger
lectrode spacings.

To quantify the reproduction quality of aquifer structures, we cal-
ulate the structural similarity index (SSIM) for each inversion result
ompared to the original data set (Fig. 4b). This metric is commonly
sed in image processing and measures the similarity between two
mages by taking into account luminance, contrast and structural in-
ormation (Wang et al., 2004). It is bounded between 0 and 1, while
he latter value indicates perfect similarity. We use the Python package
‘scikit-image’’ (van der Walt et al., 2014) to calculate the SSIM and find
t to be a useful measure to assess the quality of the inversion results.

For all methods, a decreasing SSIM with increasing spacing can be
bserved due to lower data density and stronger smoothing effects. This
ehavior is expected and corresponds to the visual assessment of the
nversion results. Generally, the lowest SSIM is computed for the HT re-
ults (between 0.17 and 0.05). Although the major layers are retrieved
orrectly, the method is not capable of retrieving the true structural
ehavior on smaller scales. The IP results yield relatively high SSIM
alues for the smallest spacing (0.30), indicating a good reproduction
f the structural features. However, increasing the electrode spacing
eads to a stronger decline of the SSIM compared to HT, showing again
hat smoothing effects are more pronounced for IP in this example.
he factor calibration can strongly improve the structural reproduction,
ith the SSIM slightly increasing for 0.25 m spacing and strongly

ncreasing for 0.5 m and 1 m spacing. While measurements with small
pacing and therefore high data density cannot be improved much
urther by the calibration, the results achieved with larger spacing
trongly benefit from this procedure. The exponential calibration is
ess successful in improving the structural information of the results,
ut still yields higher SSIM values compared to the uncalibrated IP

omograms.
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Fig. 4. (a) The original data set of the Bolstern aquifer analog. The colorbar for 𝐾 also applies to all inversion results. (b) Structural similarity index (SSIM) of the inversion
results compared to the original data set. (c) Overview of all inversion results for HT, IP and the two different IP calibrations for varying spacing of pumping locations/electrodes,
given as images of 𝐾.
To further evaluate the prediction quality of the 𝐾-estimates, we
show histograms of the ratio between the estimated and the true value
for each cell of the inversion result (Fig. 5). To perform the comparison,
the values of the 0.05 m × 0.05 m cells of the original data set had
to be averaged within the corresponding bigger cells of the inversion
results. In the histograms, values at 100 indicate a perfect prediction
of 𝐾 compared to the averaged value of the original data set. We also
9

show the median value of the ratio (blue line) as well as how much
of the prediction is within one order of magnitude (black lines and
corresponding percentage) and within two orders of magnitude (red
lines and corresponding percentage).

For the HT results a relatively broad distribution of prediction qual-
ity can be observed with approximately 90% of the values being within
the 102-interval and between 67% and 75% within the 101-interval.
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Fig. 5. Histograms of 𝐾𝑒𝑠𝑡∕𝐾𝑡𝑟𝑢𝑒 (deviation of the inversion result from the true 𝐾-value for each cell) for the different methods, calibrations and spacings with the
positions of the diagrams according to Fig. 4. The blue vertical lines indicate the median value (ideally at 100 = no deviation). The black (red) dashed lines show the
one-(two-)order-of-magnitude-interval and the percentage indicates how many cells are within this range of deviation.
A significant number of cells is strongly over-estimated, leading to a
slightly bimodal distribution of the investigated ratio with a smaller
second maximum around 102. The median value is slightly smaller than
100 for all three spacings.

The uncalibrated IP results show a narrower distribution of pre-
diction quality with 96.5%–98% of the values within the 102-interval.
While the median value is close to 100 for the smallest electrode spac-
ing, it is shifted to lower values with increasing spacing. At the same
time, the percentage of values within the 101-interval decreases from
77.5% to 59.9%. Due to the low data density and strong regularization
effects, a majority of the 𝐾-values gets significantly under-estimated
with increasing spacing.

After performing the factor calibration this bias produced by the
inversion is mostly corrected with all median values being very close
to 100 and a much higher number of values can be found within
the 101-interval. However, the growing range of the distribution with
increasing spacing cannot be removed by the calibration. The expo-
nential calibration improves the prediction quality compared to the
uncalibrated results, but is less successful than the factor calibration.
10
In the same way, a possible bias of the petrophysical laws under-
lying the inversion procedure might be corrected by the suggested
calibration approaches. While the IP method is very well capable
of retrieving the structural information correctly and giving a rough
estimation of the expected trend in the 𝐾-values, the calibration using
hydraulic information is being used for a more exact 𝐾-estimation. Still,
it is important to note that the inherent scatter of the petrophysical
laws cannot be removed and the achieved 𝐾-distribution remains an
approximation of the reality within the limits of the accuracy of the
petrophysical relations.

3.2. Transport simulation

3.2.1. Snapshots of tracer plumes
Firstly, we evaluate the results of the transport modeling by imaging

the tracer plumes that are simulated using the different inversion results
as input data for the 𝐾-distribution. Fig. 6 shows an overview of
snapshots taken at a simulation time of 50 days after starting the tracer
injection for the different methods and calibrations as well as point
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Fig. 6. Transport modeling results for HT, IP and the two different IP calibrations for varying spacing of pumping locations/electrodes, given as images of relative mass concentration
of the tracer injected in the left borehole. The result for the original data set of the Bolstern aquifer analog is given on the left for comparison. Here, the numbers (1)–(5) indicate
the preferential flow paths identified in Fig. 4. All the plots show snapshots taken 50 days after starting the tracer injection. The same color bar applies to all images.
spacings, arranged similarly to Fig. 4. The result for the original data
set is given on the left side and we consider this to be the actual
tracer concentration that would be observed in reality as a basis for
comparison. The highly permeable zones (1)–(5) identified in Fig. 4
have produced fingering tracer plumes, that mostly extend as far as
the center part of the domain (𝑥 = 6 ... 7 m). Finger (2) inhibits some
smaller variations due to the small-scale 𝐾-heterogeneities and finger
(3) splits up into two thinner layers with high tracer concentration.

The HT results for 0.25 m and 0.5 m spacing correctly show all
tracer fingers (1)–(5) with roughly the right extension and shape.
Smaller features, as e.g., the variations in finger (2) or the splitting of
finger (3), however, can hardly be made out. With 1 m spacing the two
uppermost tracer fingers disappeared due to smoothing effects and the
lack of pumping locations at the very top and only the fingers (3), (4)
and (5) are modeled correctly.

Using the IP inversion results for the tracer prediction correctly
reproduces the fingers (1), (3) and (4) with the right extension and
shape. Some small-scale features, like the splitting of finger (3), are
11
more realistic compared to HT. However, finger (2) gets strongly under-
estimated due to smoothing effects, and layer (5) cannot be sensed
due to the lack of quadrupoles in the lowest part of the domain. With
larger spacing, the stronger influence of the smoothing effects becomes
apparent. The simulation with 1 m spacing can only reproduce the
fingers (3) and (4), but they do not extend as far as they should. This
indicates, that for cross-hole IP measurements a small enough electrode
spacing is crucial to obtain reliable results.

The tracer prediction resulting from the factor calibration shows
a clear over-estimation of 𝐾 in the highly permeable layers with the
fingers (1), (3) and (4) extending too far to the right. This effect is
strongest for 0.25 m spacing, where the plume is already extending out
of the domain at this time step. For the larger spacings, the images are
at least closer to the reality than the uncalibrated results, although still
somewhat over-corrected.

The best prediction of tracer plumes is achieved by the exponential
calibration. For 0.25 m spacing the uncalibrated result has already been
close to reality and it remains almost unchanged by the exponential



Advances in Water Resources 170 (2022) 104322L. Römhild et al.
Fig. 7. (a)–(c): Depth-integrated tracer breakthrough curves at the center borehole (x = 6 m) resulting from different inversion results and calibrations compared to the original
Bolstern data set (red solid line) and a hypothetical homogeneous model (red dashed line) for varying spacing of pumping locations/electrodes. (d) Breakthrough delay of the
different methods and calibrations depending on the varying point spacing as a measure for the error of the transport simulations compared to the original data set. The dashed
lines represent a linear regression between the data points for visual guidance only.
calibration. A stronger effect of the calibration is visible for 0.5 m
spacing, where the extension of the plumes is now predicted correctly.
For 1 m spacing the result is still quite far from reality since the
calibration cannot compensate for the lack in identified structures and
the strong smoothing effects. Even so, there is a clear improvement
compared to the uncalibrated result.

3.2.2. Tracer breakthrough curves
The depth-integrated relative tracer concentration over time at the

central borehole (𝑥 = 6 m) is depicted in Fig. 7a–c. The concentrations
were also recorded in the right borehole (𝑥 = 9 m), but all the main
trends in the results are similar, so they are not further detailed here.

The breakthrough curve (BTC) for the original data set (red line)
shows a relatively steep increase in tracer concentration within the first
150 days, which is stimulated by the highly permeable layers in the
aquifer (layers (1)–(5) in Figs. 4 and 6). For later times, we observe
a much slower increase in concentration as a result of the delayed
propagation in the less permeable parts.

As a basis for comparison, we also show the BTC of a hypothetical
homogeneous model with 𝐾𝑒𝑓𝑓 = 7⋅10−5 m s−1 (red, dashed line). Here,
we only observe a relatively quick incline of tracer concentration in
the time span between 150 and 200 days. However, the true shape of
the BTC cannot be reproduced, since no structural information on the
sediments is processed. In contrast, all transport simulation results from
HT and IP better approximate the true shape of the BTC. Apparently,
the structural information gained from the two imaging techniques is
valuable, even when just looking at depth-integrated BTCs. Especially
the tracer breakthrough at early times is strongly under-estimated by
the homogeneous model.

The HT results (black lines) are successful in reproducing the whole
BTC, although we observe a slight under-estimation of tracer break-
through at early times and an over-estimation at late times. This
12
can be interpreted as a result of smoothing effects, leading to a less
pronounced distinction between areas with higher or lower 𝐾. It corre-
sponds with the fact that this effect becomes stronger with increasing
spacing, where smoothing effects have more impact.

Although the IP results (dark blue lines) correctly reproduce the
general shape of the BTC (due to correctly retrieved structural informa-
tion), they strongly under-estimate the tracer breakthrough within the
entire time span. Apparently, the tomograms are not accurate enough
to be used for a transport simulation.

The exponential calibration (cyan lines) mainly corrects the early-
time behavior of the BTC since only the highly permeable parts are
changed by this calibration approach. Especially for the larger spacings
(0.5 m and 1 m) this brings an advantage compared to the uncalibrated
result, whereas for the smallest spacing (0.25 m) almost no change can
be observed. This is in agreement with the findings for the inversion
results (Fig. 4) and the tracer plumes (Fig. 6). For the late times,
the calibration does not compensate the under-estimation of tracer
breakthrough. However, this is not caused by an under-estimation of
𝐾 in the less permeable zones, since the slope of the BTC is correctly
reproduced. Instead, the extension of high-𝐾-zones is underestimated
due to regularization (especially for large spacings) and therefore the
early-time breakthrough reaches lower concentrations. This offset re-
mains for the whole time span and leads to an overall under-prediction
of tracer breakthrough.

The factor calibration (green lines) is more successful in correcting
the IP results. Although the tracer concentration is over-estimated for
early times, the long-term behavior is correctly predicted with a quality
that is at least similar to the HT results. Applying the 𝐾𝑒𝑓𝑓 -value to the
whole domain yields the best 𝐾-prediction in terms of average values
and therefore the best reproduction of the complete BTC.
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Finally, we assess the impact of the point spacing (electrodes or
pumping locations) on the quality of the tracer breakthrough predic-
tion. For this purpose, we pick a certain breakthrough time for all
curves at the time where half of the relative concentration has been
reached. We calculate the difference to the breakthrough time of the
original data set and call this the breakthrough delay, considering
it a rough measure for the error in the prediction of the BTC. The
dependency of the delay on the spacing is shown in Fig. 7d. For all
methods we observe an increase of the delay for increasing spacing due
to a lower data density and stronger smoothing effects. This effect is
only weakly pronounced for the HT results, indicating again that the
point spacing is not as crucial and relatively good results can also be
achieved with fewer pumping tests. On the other hand, the dependency
on electrode spacing of the uncalibrated IP results is very pronounced,
showing that a sufficiently small electrode spacing is particularly im-
portant to retrieve all the necessary structural information and gain
good 𝐾-estimates. However, acquiring cross-borehole IP data with such
small spacing in the field can be a very challenging task. Therefore, we
consider the calibration with hydraulic data to be valuable especially
when a larger spacing has to be used and therefore important structural
information is not well resolved. While the exponential calibration can
only slightly compensate for those problems, the factor calibration is
very successful in reducing the breakthrough delay. Here, the results
have a quality very similar to the HT data and the errors resulting from
the large electrode spacing have been reduced significantly.

4. Conclusions

We have shown that both HT and IP are valuable tools for imaging
𝐾-heterogeneities in near-surface aquifers. The structural information
of our test data set, the Bolstern aquifer analog, has been recon-
structed by the inversion procedures to a high degree of resolution and
quantitative accuracy. For the first time, the distribution of 𝐾 could
be computed directly from the IP data with our new IP-𝐾 inversion
rocedure and the general quality of the results is comparable to
he HT travel time inversion. However, to achieve highly accurate
-estimates that allow using the results for groundwater modeling,
e calibrate the results with hydraulic information. After the factor

alibration, the depth-integrated tracer BTCs of the original data set
ould be reproduced. Imposing 𝐾𝑒𝑓𝑓 on the whole domain leads to a
ood prediction of the long-term behavior of tracer breakthrough. On
he other hand, the exponential calibration is more suitable to correctly
redict the tracer plumes at early times. Therefore, in practice it would
e necessary to decide on one of the calibrations depending on how
he data will be used later on. Both calibrations may not only correct
egularization-induced errors in 𝐾-prediction, but also a possible bias of
he petrophysical laws that link electrical and hydrological parameters.
lthough we cannot account for the inherent scatter of the petrophys-

cal relations, we still consider those calibrations to be highly valuable
ools within the processing of IP data. While the structural features of
n aquifer can be accurately retrieved with IP, hydraulic information
s essential for a reliable 𝐾-quantification.

Future research should focus on testing the suggested methodology
ithin field experiments. The new IP-𝐾 inversion procedure for IP
ata has already been tested on borehole data (Fiandaca et al., 2021)
nd 2D surface profiles from five different European countries (Martin
t al., 2021), giving 𝐾-values within one decade from slug tests/grain
ize analysis estimates. However, no benchmarking of the field 𝐾-
stimates for flow and transport modeling or tracer experiments have
een conducted yet.

Ideally, future field experiments should follow a similar concept as
resented in this study (Fig. 1). Conducting both HT and IP experiments
t the same site would allow a direct comparison of the performance
f the methods in the field. Furthermore, the pumping tests carried
13

ut for the HT survey could provide the 𝐾𝑒𝑓𝑓 -value needed for the IP e
alibrations. Finally, the quality of the achieved 𝐾-images might also
be tested by tracer experiments.

On the other hand, field campaigns with limited financial and
time resources may now also rely on IP measurements alone (together
with one or just a few pumping tests for retrieving 𝐾𝑒𝑓𝑓 ) following
the suggested calibration methodology. While a full HT experiment
is often very time-consuming and costly, IP measurements can mostly
be conducted within a few hours (in a setting similar to the example
shown in this work). Therefore, a detailed characterization of aquifer
heterogeneities in the field might become more convenient by applying
our IP-𝐾 inversion procedure and the results can be expected to have
a similar quality compared to HT.

However, the two calibration approaches suggested in this work
should only be regarded as a starting point. In a real field environment,
further elaborated calibration methods might turn out to be more
successful. Furthermore, stronger data integration approaches between
hydraulic and geophysical methods are expected to yield even better
results. While hydraulic methods are often most sensitive to preferential
flow paths, IP generates the strongest polarization response in areas of
low 𝐾. We therefore see a big potential in using the complementary
sensitivities of the two methods by a stronger integration of the data.
Ultimately, a fully-joint inversion of HT and IP data sets might open
the door to an improved ability of imaging hydraulic conductivity in
near-surface aquifers.
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Appendix A. Strategy of the exponential calibration

Visualization of the concept of the exponential calibration of IP in-
version results by incorporating pumping test data. (a) The selection of
a suitable 𝜉-percentile influences the resulting value for 𝛼, thereby de-
termining the overall strength and direction of the calibration. (b) The
function 𝛼(𝜉) for the three different spacings using 𝐾𝑒𝑓𝑓 = 7⋅10−5 m s−1
s retrieved from the pumping test data. This plot is typically helpful
o find a reasonable value for 𝜉. It should usually be higher for larger

lectrode spacings (e.g., green line - 1 m spacing) since smoothing

https://doi.org/10.5281/zenodo.6361423
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effects lead to more extensive areas of low 𝐾. (c) Setup of pumping tests
for the derivation of 𝐾𝑒𝑓𝑓 . The source–receiver combinations used for
this procedure are a subset of the full HT data set. (d) The dependence
of 𝐶𝛼 on the respective 𝐾-values of the inversion result, visualizing the
exponential law inspired by the strength of the IP signal and the effect
of different 𝛼-values.

Appendix B. Full forward model and IP inversion result

(a) Left part: Bolstern aquifer analog data including the parameters
hydraulic conductivity 𝐾, diffusion coefficient 𝐷+ and total electrical
conductivity 𝜎0 as a combination of water conductivity 𝜎𝑤, formation
factor 𝐹 and the real part of interface conductivity 𝜎′𝑖𝑛𝑡. The frequency
exponent 𝑐 is assumed to be homogeneous and is therefore not shown
14
here. The forward modeling was performed in the WhyCDF model
space. Right part: IP inversion result, performed in the ThyCD model
space with 0.25 m electrode spacing. The transparent parts (lower
corners) indicate areas with low sensitivity. (b) Misfit of the inversion
result along the whole profile. The misfits of the DC data (blue line)
and the IP data (red line) end up to be very balanced and the overall
data misfit 𝜒 = 1.1 indicates that after the inversion the data are
fitted closely to the noise level. The final result was achieved after ten
iterations. (c) Exemplary decay curves of the forward simulation with
added Gaussian noise (black lines) including error bars of the assumed
standard deviation model and fitted decay curves of the inversion result
(red lines).
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