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A B S T R A C T   

Interpretation of tracer tests in geothermal reservoirs is carried out by fitting the measured data either with 
simplified two-dimensional (2-D) analytical solutions or with complex numerical models. Available analytical 
solutions commonly only describe isotropic conditions in 1-D or 2-D, which is generally unsatisfactory to 
construct realistic reservoir models. Moreover, due to the large spatial and temporal scale of a tracer test in deep 
reservoirs, the concentration levels measured in the field are relatively low due to dispersion that complicates the 
assessment of breakthrough curve tailing and residence time. Fitting tracer data with fully resolving 3-D nu
merical models thus may be more appropriate, but even with a rich set of field data, reliable calibration is often 
compromised by the high computational effort and data hunger of such models. In this study, an advanced 
workflow is presented for evaluating tracer test data. Firstly, a 3-D analytical model in which solute transport is 
considered in anisotropic porous media is developed. Green’s function method is applied to obtain a moving line 
source solution of the convection-dispersion-diffusion equation for solute transport in a 3-D porous medium. In 
addition, Green’s function equation is analytically convoluted with a rectangular pulse function, which repre
sents tracer injection. Secondly, the analytical model results are fitted to the tracer test data by Monte-Carlo 
simulations to obtain feasible ranges of flow velocities, as well as longitudinal and transversal dispersivities. 
Finally, the derived parameter values are implemented in a 3-D numerical model to evaluate the solute residence 
time in a large-scale reservoir. The results applied to field data from the Kızıldere field in Turkey demonstrate 
that the workflow provides robust estimates of effective parameters from well-to-well data in complex reservoir 
systems with anisotropic flow paths. Thus, despite the higher effort of applying convolution and stochastic 
parameter estimation, the preceding analytical step of the workflow substantially eases numerical model set-up.   

1. Introduction 

Management of subsurface reservoirs is essential for sustainable 
water supply and energy provision. For the characterization of shallow 
aquifers and deep reservoirs, tracer injection tests are means to inspect 
fluid flow and transport properties and to understand the connectivity 
between the wells for optimal reinjection strategies. In particular, in 
geothermal reservoirs, tracer test analysis is important to predict the 
cold-front advancement between injection and production wells and 
energy depletion. Quantitative characterization of flow, transport pro
cesses, and interpretation of tracer test data are major challenges in a 
subsurface reservoir due to the limited expressiveness of geological and 
geophysical data for hydraulic characterization. Moreover, the 

application scale is large and a long-time duration is needed for moni
toring the propagation of tracers in-situ. Solute tracer breakthrough 
curves (BTC) thus reach only low concentrations, and continued 
dispersion and long solute residence time cause substantial tailing of 
BTCs. To deal with these challenges in the analysis, a new workflow is 
presented to quantify reservoir flow parameters and to improve the 
assessment of solute tailing behavior in a geothermal reservoir. 

The tracer transport process can be scrutinized with computer-based 
models, with which crucial reservoir parameter values are derived by 
calibration with field responses. Mostly, analytical models based on 
solutions of the convection-dispersion-diffusion differential equation are 
employed (Bullivant and O’Sullivan, 1989; Maloszewski & Zuber, 1993; 
Gerke and van Genuchten, 1996; Akın, 2001; Becker and Shapiro, 2003; 
Cihan and Tyner 2011; Houseworth et al., 2013; Somogyvári and Bayer, 
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2017; Ronchetti et al., 2020; Li et al., 2021; Delbar and Chapuis, 2021). 
There exists a range of different analytical models, which are used 
individually or imposed into artificial neural network models (Akın, 
2005; Gudmundsdottir and Horne 2020; Bodin 2020). 

A common assumption for analytical models is one-dimensional (1- 
D) or 2-D radial symmetry. Models in lower dimensions provide rela
tively limited isotropic information for intricate porous and fractured 
media. When tracer tests are conducted during production from large- 
scale geothermal reservoirs, often multiple wells are operated during 
tracer injection yielding a flow field with components of forced, non- 
radial convection. For example, Gunderson et al. (2002) observed that 
injected tracers flow at significantly oblique angles to the predominant 
pressure gradient, indicating strong anisotropic reservoir permeability. 
As an alternative to radial analytical simulation, full 3-D numerical 
models can be applied at the expense of substantial computational effort 
and increased data requirements (Cihan and Tyner 2011; Egert et al., 
2020; Deb et al., 2020; Wu et al., 2021). Ideally, as a suitable compro
mise, a 3-D analytical model that accounts for anisotropic permeability 
and dispersivity would be needed, while keeping the data hunger and 
thus the computational effort of implementation and calibration low. 
The development of such a model is the focus of this study. 

Analytical solutions of the convection-dispersion-diffusion equation 
can be obtained through the implementation of different mathematical 
techniques such as Laplace and Fourier transforms. These are then used 
to derive transport equations (e.g., van Genuchten and Alves, 1982; 
Maloszewski and Zuber, 1985; Leij et al., 1993; Yadav and Roy, 2018; 
Ding et al., 2021) where different methods such as the Fourier series 
(Güven et al., 1984; Bharati et al., 2019), finite integral transforms (e.g., 
Cleary and Adrian, 1973) and Green’s function method (e.g., Cole et al., 
2010; Ellsworth and Butters 1993; Leij et al., 2000; Rivera et al., 2016a; 
Rivera et al., 2016b) can be applied. Particularly, Green’s function 
method is appropriate to solve the transport equation with arbitrary 
initial or boundary value profiles in several dimensions for irregular 
geometries (Greenberg, 1971). 

Sauty (1980) presented models for slug and continuous injection of 
tracers in 1-D uniform and 2-D radial flow conditions in porous media. 
These models can be used to analyze field data using simple curve 
matching techniques. Van Genuchten & Alves (1982) are among the 
pioneers who developed various pulse tracer injection models of solute 
transport in porous media for convection-dispersion-diffusion processes 
with Laplace transform techniques applied to semi-infinite and finite 

systems (van Genuchten and Alves, 1982; van Genuchten, 1985; van 
Genuchten and Dalton, 1986). Van Genuchten (1985) derived a shape 
factor for rock matrix blocks for 1-D convection-dispersion transport. 
Maloszewski & Zuber (1985) proposed an analytical model of tracer 
injection in parallel fractures for short-term and long-term tracer ex
periments. Bullivant & O’Sullivan (1989) developed several 1-D models 
for tracer transport assuming single fracture, fracture/matrix, 
dual-porosity cubes, pseudo-steady-state double-porosity, and two 
fracture conditions. They concluded that the models, which allow 
transient diffusion from fractures into the surrounding rock matrix (i.e., 
fracture/matrix and dual porosity cubes approaches), provide a better 
match to test results than a model, which allows only longitudinal 
dispersion (i.e., single fracture approach) or a pseudo-steady-state 
double-porosity approach. 

Cihan & Tyner (2011) presented 2-D radial analytical solutions for 
tracer injection in an infinite dual-porosity medium, which were derived 
for three conditions: constant injection, instantaneous release, and pulse 
release. The governing equations were solved by the Laplace transform 
method for solute concentration as a function of space and time. The 
solutions were successfully validated with numerical simulations, 
including matrix advection in longitudinal and transverse directions, 
and longitudinal dispersion. Houseworth et al. (2013) proposed math
ematical models for 2-D flow and transport through a water-saturated 
single fracture and permeable rock matrix. A Laplace transform 
method was used to solve these equations. The models are developed for 
different flow systems as: i) 2-D flow is assumed in the matrix with an 
arbitrary flow direction relative to the orientation of a fracture; ii) a 
point source-release of a solute that can take place either in the matrix or 
fracture; iii) independent longitudinal dispersion and diffusion which 
may occur either in the fracture or matrix, respectively. A model that 
considers a divergent radial advective-dispersive transport in fractures 
and diffusive mass transfer in matrix blocks of rock was introduced by 
Haddad et al. (2014). Their results revealed that dispersivity is inde
pendent of the rock matrix block size distribution for 
dispersion-dominated transport in the fractures. Bharati et al. (2019) 
proposed a pulse-type source of an analytical solution of the 
advection-dispersion equation, where spatially dependent concave and 
convex dispersivity was obtained with a fractal distribution by using 
Fourier series. 

There exists an analytical 3-D advection-dispersion equation, which 
was derived by using Green’s function method for constant flux 

Nomenclature 

c solute concentration (mg m− 3) 
cL injected solute concentration rate per meter (mg m− 1 s− 1) 
CL injected solute concentration rate (mg s− 1) 
d pore diameter (m) 
Dx,y,z hydrodynamic dispersion coefficient (m− 2 s− 1) 
h fracture aperture (m) 
H Heaviside step function (i) 
H line source length (m) 
K distribution coefficient (m3 kg− 1) 
L characteristic length (m) 
Lav average distance between two points in 3-D (m) 
P pressure (Pa) 
Pe Peclet number (i) 
R solute retardation factor (i) 
s zero-order source or production term (mg m− 3 s− 1) 
ux,y,z flow velocity (m s− 1) 
t time (s) 
T period of rectangular pulse injection (s) 
T temperature (K) 

v seepage velocity (m s− 1) 
vTx,y,z solute velocity (m s− 1) 
x, y, z coordinates (m) 

Greek symbols 
αL longitudinal dispersivity (m) 
αT transverse dispersivity (m) 
δ Dirac delta function (i) 
ΔP pressure difference (Pa) 
Δz distance difference in z direction (m) 
κx,y,z absolute permeability (m2) 
μ dynamic viscosity (Pa s) 
ρ bulk rock density (kg m− 3) 
ϕ porosity (-) 

Subscripts 
f fracture 
inj injection 
m matrix 
pro production  

S. Erol et al.                                                                                                                                                                                                                                      



Geothermics 101 (2022) 102375

3

boundary condition evaluated with Laplace transform (Ellsworth and 
Butters, 1993). This equation accounts for anisotropic flow but neglects 
dispersivity. Leij et al. (2000) introduced solutions with the Green’s 
function method applied for various solute transport phenomena in 
infinite, semi-infinite, and finite media. These solutions were applied for 
conditions with longitudinal and transversal solute transport and a 
persistent source. 

In the present study, a 3-D analytical model is developed. This 
analytical model can be used for anisotropic media to obtain effective 
parameters from well-to-well data in particular where flow paths be
tween injection and production wells are complex. Green’s function 
method is applied in 3-D to deal with the solute transport in a medium 
with a rectangular pulse injection source representative for tracer in
jection tests. Green’s function is solved for anisotropic media by relying 
on the moving line source theory (Molina et al., 2011a; 2011b). For 
pulse injection, the approach involves analytical convolution between a 
rectangular injection function and Green’s function of 3-D solute 
transport. 

Overall, this study aims to propose an advanced workflow of tracer 
test analysis to characterize the conditions in a deep geothermal reser
voir. The workflow is specifically tailored to identify anisotropic reser
voir parameters and to inspect solute residence time distribution. In the 
first step, the developed analytical model is coupled with stochastic 
Monte-Carlo simulations and iteratively fitted to tracer breakthrough 
data collected at the Kızıldere geothermal field production wells located 
in the Denizli and Aydın provinces of western Turkey at the eastern part 
of Büyük Menderes graben (Şimşek et al., 2005). Following that, the 
derived flow parameter values are used to estimate the anisotropic 
permeabilities of the reservoir. In most cases, due to dispersion and 
mixing in the reservoir, the measured tracer concentration in observa
tion wells is very low. After the peak concentration arrival, it is difficult 
to estimate the solute residence time distribution from the measured 
solute concentration. The approach presented here thus identifies 
feasible parameter ranges rather than trying to estimate deterministic 
values. Moreover, in the last step, the derived anisotropic permeabilities 
and dispersivities are implemented in a 3-D numerical double-porosity 
simulator to set up a flexible deep geothermal reservoir model to eval
uate the BTC tailing behavior and solute residence time in a large-scale 
reservoir. The proposed workflow reduces computational expense and 
time to evaluate reliable values of effective reservoir parameters. 

2. Methodology 

The workflow of this study is shown in Fig. 1. A conceptual 
geological model based on field measurements and observations is 
constructed. Then Monte-Carlo simulations are carried out with the 
analytical model developed here to assess the flow and reservoir pa
rameters by fitting the measured tracer BTCs. In the last step, the in
jection and production rates, the injection amount of tracer, initial and 
boundary conditions with the obtained parameters are implemented in a 
3-D numerical model to create a local geothermal reservoir model of the 
Kızıldere field to assess BTC tailing and correspondingly the solute 
residence time distribution. 

2.1. Analytical model 

For simulation, we first consider a continuous medium. This serves as 
a basis for the description of transport in porous media and, subse
quently, also upscaled conditions in fractured reservoirs. The governing 
partial differential equation (PDE) of the solute convection-dispersion- 
diffusion in 3-D cartesian coordinates in porous media is given as: 

R
∂c
∂t

=

(

Dx
∂2c
∂x2 +Dy

∂2c
∂y2 +Dz

∂2c
∂z2

)

− ux
∂c
∂x

− uy
∂c
∂y

− uz
∂c
∂z

+ s (1)  

in which t is time, c is the solute concentration, R is the solute 

retardation factor, Dx, y, z are hydrodynamic dispersion coefficients, ux, 
uy and uz are flow velocities along the x-, y-, and z-directions, and s is the 
production term. The solute retardation can be estimated as: 

R = 1 + ρ K
ϕ

(2)  

where ρ is bulk rock density, K is the distribution coefficient and ϕ is the 
porosity of the porous or fractured medium. Hydrodynamic dispersion 
coefficients are calculated based on longitudinal αL and transverse αT 
dispersivities that are defined in x-, y-, and z-directions as follows: 

Dx = D0 + αLux;Dy = D0 + αT uy;Dz = D0 + αT uz (3)  

in which D0 is the molecular diffusion coefficient. The dispersivities 
depend on the velocity field. The x-direction is considered longitudinal, 
and y- and z-directions are transversal. The diffusion coefficient for an 
injected liquid tracer at different temperatures can be defined using the 
Stokes-Einstein equation. The diffusion coefficient of a tracer in a 
reservoir thus is estimated as: 

DT2 = DT1

μT2T2

μT1
T1

(4)  

where T1 and T2 are injection and reservoir temperatures, respectively. 
DT1 is the diffusion coefficient of a tracer at the injection temperature, 
μT1 and μT2 are the dynamic viscosity coefficients corresponding to the 
respective temperatures. 

Leij et al. (2000) provide the application of Green’s function method 
on the governing solute convection-dispersion equation (Eq. (1)). 
Green’s function method provides the relationship between a line inte
gral around a closed curve and a triple integral over the plane region (x, 
y, z). The corresponding 3-D problem can be expressed in terms of the 
differential operator Ψ as: 

Ψ(c) =
∂c
∂t

−

(
Dx

R
∂2c
∂x2 +

Dy

R
∂2c
∂y2 +

Dz

R
∂2c
∂z2

)

+
ux

R
∂c
∂x

+
uy

R
∂c
∂y

+
uz

R
∂c
∂z

=
s
R

(5) 

By multiplying Green’s function Gf, an alternative adjoint problem 
can be obtained: 

Fig. 1. Workflow of multi-well tracer test analysis conducted in a 
geothermal reservoir. 
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∫ ∫ ∫ ∫

Gf Ψ(c) = Bc − terms+
∫ ∫ ∫ ∫

cΨ∗(Gf )

=

∫ ∫ ∫ ∫

Gf
s
R

(6)  

where Bc-terms denotes the boundary terms. Then, the differential 
operator Ψ* given in Eq. (6) can be defined as: 

Ψ∗ = −

(
Dx

R
∂2c
∂x′2 +

Dy

R
∂2c
∂y′2 +

Dz

R
∂2c
∂z′2

)

−
ux

R
∂c
∂x′ −

uy

R
∂c
∂y′ −

uz

R
∂c
∂z′ −

∂
∂τ (7) 

The integral variables (x’, y’, z’, τ) correspond to coordinate vari
ables and time t (x, y, z, t). The differential operator given in Eq. (7) is 
similar to the partial differential equation (PDE) provided in Eq. (1) 
excluding the negative time and the velocity vectors. A solution for 
tracer concentration c can be obtained from the equivalent problem 
through the adjoint operator. Green’s function method uses the Dirac 
delta function δ (an impulse spike function), which is applicable for 
instantaneous tracer injection. The differential operator on the Green’s 
function Gf is equal to a four-dimensional Dirac delta function given as 
follows: 

Ψ∗(Gf ) = δ(x − x′

, y − y′

, z − z′

, t − τ) = δ(x − x′

)δ(y − y′

)δ(z − z′

)δ(t − τ)
(8) 

The Green’s function Gf (x, y, z, t; x’, y’, z’, τ) indicates the con
centration at (x, y, z, t) as a result of an instant solute release at the time τ 
for a unit source located at (x’, y’, z’). The full expression of the equation 
solved for an infinite spatial domain can be found in Leij et al. (2000) 
where the basis of a wide variety of analytical models in multiple di
mensions is provided. When solving the equation, the production term s 
is assumed as zero in most of the cases. 

Green’s function Gf is defined as the sum of the fundamental solution 
F according to the superposition principle. The fundamental solution F 
can be derived by solving Eq. (8) with Fourier transformation and then 
by solving the initial value problems for an instantaneous point source 
that result in an analytical expression. The fundamental solution F can 
be defined as: 

F(x, y, z, t; x′

, y′

, z′

, τ) = Fx(x, t; x
′

, τ)Fy(y, t; y
′

, τ)Fz(z, t; z
′

, τ) (9) 

Solving the fundamental formulation of the PDE given in Eq. (1), the 
Green’s function Gf of a pulse point source can be obtained at the given 
point coordinates (x’, y’, z’) and time t = 0. Moreover, applying the 
moving source theory for the x-, y-, and z-directions with constant drifts 
(Carslaw and Jaeger, 1959), the fundamental equation can be written as:  

where H is the Heaviside step function, vTx, vTy, and vTz are the solute 
velocities, which yield the flow velocity vector: 

vTx,y,z =
Pex,y,zD0

d
=

ux,y,zL
D0⏟̅̅⏞⏞̅̅⏟Pex,y,z

D0

d
(11)  

where L is the characteristic length, d is the pore diameter. Eq. (11) is 
typically defined for porous media. To depict a model from a continuum 
approach to the fractured medium, a Peclet number based on the 

geometric factors of the flow channels can be formulated. It is assumed 
that a conservative tracer flows with the same velocity as bulk fluid flow. 
The characteristic length can be calculated as L = π / Sf, where Sf is the 
specific surface area. Sf is the ratio between the cross-section area over a 
volume of the geometric shape of a spherical pore or for simplicity a 
cylinder-shaped fracture defined with Sf = A / V. The Peclet number can 
be defined as Pex,y,z = ux,y,z L / D0, or for fracture flow Pex,y,z = ux,y,z h / 
D0, where h is the fracture aperture. 

From this point, the given solution function in Eq. (10) can be inte
grated along the vertical z-direction for a finite line source length H with 
a pulse of solute injection, where a point source is superpositioned. The 
solution is expressed as: 

F=
CL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

DxDyDz

(
4πt
R

)3
√

⎡

⎣
∫H

0

exp

(

−
(R(x− x′

)− vTxt)2

4tDxR
−

(
R(y− y′

)− vTyt
)2

4tDyR
−

v2
Tzt

4DzR
+
(z− z′

)vTz

2Dz
−

R(z′

− z)2

4tDz

)

dz′

⎤

⎦

(12)  

where CL is solute tracer concentration rate input. 
The integration part over the line source length H in Eq. (10) can be 

simplified by using the substitution method: 

F =
CL

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

DxDyDz

(
4πt
R

)3
√ exp

(

−
(R(x − x′

) − vTxt)2

4tDxR
−

(
R(y − y′

) − vTyt
)2

4tDyR

)

×

⎛

⎝
∫H

0

exp

(

−
v2

Tz

4DzR
+
(z − z′

)vTz

2Dz
−

R(z′

− z)2

4tDz

)

dz′

⎞

⎠

(13) 

To satisfy the boundary conditions of the domain, the method of 
images theory is applied on the moving source part in the z-direction 
(Bear, 1979), where the source is represented as a line. The substitution 
part can be represented as: 

φ2 =
R(z − z′

)
2

4Dzt
→φ =

̅̅̅
R

√
(z − z′

)
̅̅̅̅̅̅̅̅̅
4Dzt

√ (14)  

−

̅̅̅̅̅̅̅̅̅
4Dzt

R

√

dφ = dz′ (15) 

Integral limits of the φ-value from z – H to z and from z to z + H are 
defined to satisfy the boundaries concerning the method of images: 

φ :
z − H
̅̅̅̅̅̅
4Dzt

R

√ →
z
̅̅̅̅̅̅
4Dzt

R

√ andφ :
z
̅̅̅̅̅̅
4Dzt

R

√ →
z + H
̅̅̅̅̅̅
4Dzt

R

√ (16) 

Substituting the conditions Eq. (16) and Eq. (15) into Eq. (13), the 
solution can be rewritten as: 

F =
H(t − τ)

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

DxDyDz

(
4π(t − τ)

R

)3
√

×exp

(

−
(R(x − x′

) − vTx(t − τ))2

4DxR(t − τ) −

(
R(y − y′

) − vTy(t − τ)
)2

4DyR(t − τ) −
v2

Tz(t − τ)
4DzR

+
(z − z′

)vTz

2Dz
−

R(z′

− z)2

4Dz(t − τ)

)
(10)   
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F =
CL

̅̅̅̅̅̅̅̅̅
πtDz

√

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

DxDyDz

(
4πt
R

)3
√

⎡

⎢
⎢
⎢
⎢
⎣

exp

(
(R(x − x

′

) − vTxt)2

4tDxR
−

(
R(y − y′

) − vTyt
)2

4tDyR

)

×

(

erf
(

R(H − z) + tvTz
̅̅̅̅̅̅̅̅̅̅̅̅
4tDzR

√

)

− erf
(

tvTz − Rz
̅̅̅̅̅̅̅̅̅̅̅̅
4tDzR

√

))

⎤

⎥
⎥
⎥
⎥
⎦

(17) 

The integration of exponential function f = exp(-ω2) is expressed 
with the error function defined as: 

erf (x) =
2̅
̅̅
π

√

∫ x

0
exp
(
− ω2)dω→

̅̅̅
π

√

2
erf (x) =

∫ x

0
exp
(
− ω2)dω (18) 

After simplification, Eq. (17) reduces to: 

F =
CLR

8πt
̅̅̅̅̅̅̅̅̅̅̅
DxDy

√ exp

(
(R(x − x′

) − vTxt)2

4tDxR
−

(
R(y − y′

) − vTyt
)2

4tDyR

)

×

(

erf
(

R(H − z) + tvTz
̅̅̅̅̅̅̅̅̅̅̅̅
4tDzR

√

)

− erf
(

tvTz − Rz
̅̅̅̅̅̅̅̅̅̅̅̅
4tDzR

√

))

(19) 

CL is still a Heaviside step function where CL(t) = 1, for t ≥ 0. If CL is 
superimposed per meter depth for a given time, the input rectangular 
pulse injection function can be analytically convoluted by shifting over 
the convection-dispersion-diffusion part of Eq. (19) (impulse response) 
with a given time interval Δt. Details of this technique for heat transfer 
are described elsewhere (Erol et al., 2015). Here, it is assumed that the 
solute concentration rate CL is injected at a constant rate per meter 
depth, which can be estimated by dividing the total injection rate of the 
solute by the total length of the line source, H. 

Eq. (19) is segregated into two parts: cL represents a rectangular 
pulse function, and the convection-dispersion-diffusion part is expressed 
as an impulse response function I (x, y, z, t). Hence, the following 
equation can be obtained:   

To apply a pulse injection for a specific time frame, the boundary 
conditions can be defined as follows: 

cL(t) =
{

cLfort ∈ [0,T]
0, otherwise (21)  

in which T is the period of rectangular pulse injection, cL is the injected 

tracer concentration rate per meter depth. 
The convolution of the function I and cL can be formulated as: 

c(x, y, z, t) =
∫∞

− ∞

cL(τ)I(x, y, z, t − τ)dτ→cL

∫T

0

I(x, y, z, t − τ)dτ (22) 

This convolution integral equation can be solved by discretizing both 
the cL and I function with a differential interval of Δt. The sum of impulse 
responses at given coordinates (x, y, z) provides the convolution in 
analytical form and can be written as: 

c(x, y, z, t) =
∑n− 1

i=0
cL(iΔt)I(x, y, z, t − iΔt)Δt (23)  

where i Δt denote the time interval of each unit impulse (i.e., time 
delay), n is the time span, and the delayed and shifted impulse response 
is expressed as cL (i Δt) I(t - i Δt) Δt. For instance, the total amount of 
injected tracer is 200 kg (2 × 108 mg), which is divided by the assumed 
line source length (e.g., 150 m). If the time interval is Δt = 1 h, then 2 ×
108 mg / H is injected per hour. The output concentration is given in mg 
m− 3. The coordinates x, y, z as given in Eq. (20) correspond to the dis
tance difference between the injection and arbitrary observation points 
(Δx, Δy, Δz). The convolution and the line source are illustrated in 
Fig. 2. The proposed analytical model (Eq. (23)) is called Anisotropic 
Solute Moving Line Source (ASMLS). 

The permeability is estimated according to Darcy’s law in 3-D as: 

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

κx = −
uxμΔx

ΔP

κy = −
uyμΔy

ΔP

κz = −
uzμΔz

ΔP

(24)  

where μ is the dynamic viscosity, and ΔP is the pressure difference be
tween injection and production wells under steady-state conditions. For 
the subsequent demonstration, the developed analytical model is 
implemented in MATLAB version 2019a (MATLAB, 2021). 

2.2. Models used for comparison and verification 

The ASMLS model is compared with four different solutions where 
different flow conditions are implemented. As the first one, a slug tracer 
injection model by Sauty (1980) considering advective-dispersive 
transfer is adopted. This model considers longitudinal and transversal 
effects of a tracer propagating in a 2-D uniform flow regime. At a given 
distance from the injection position, the evolution of concentration can 
be estimated by: 

Fig. 2. a) Illustration of analytical convolution between impulse response and a 
rectangular function with a time interval Δt. b) Line source for injection of a 
tracer and the distance to an observation well in a three-dimensional plane. 

c(x, y, z, t) = cL
R

8πt
̅̅̅̅̅̅̅̅̅̅̅
DxDy

√ exp

(
(R(x − x′

) − vTxt)2

4tDxR
−

(
R(y − y′

) − vTyt
)2

4tDyR

)

×

(

erf
(

R(H − z) + tvTz
̅̅̅̅̅̅̅̅̅̅̅̅
4tDzR

√

)

− erf
(

tvTz − Rz
̅̅̅̅̅̅̅̅̅̅̅̅
4tDzR

√

))

⏟̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏞⏞̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅⏟I(x,y,z,t)

(20)   
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Cu =
αL
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a2 + 4)
√

− 2
)

ut
exp

[(
a2 +

( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(a2 + 4)

√
− 2
)2)

4
( ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(a2 + 4)
√

− 2
)

]

exp

⎡

⎢
⎢
⎢
⎣

−

a2 +

(
ut
αL

)2

4ut
αL

⎤

⎥
⎥
⎥
⎦

(25)  

where u is the uniform flow velocity, and a is given as: 

a =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
x2

α2
L
+

y2

αLαT

√

(26) 

Bullivant & O’Sullivan (1989) provided several 1-D models for 
porous and fractured media. Here, two of their models are considered; 
single fracture and fracture-matrix models. The assumption of the single 
fracture solution is based on a single flow path where tracer flows within 
no-slip boundary conditions at the walls of the fracture. The single 
fracture solution is given as: 

Csf =
m

4Q
̅̅
t

√
2tm

t

̅̅̅̅̅̅̅
w

πtm

√

exp

(

−
w
4
(t − tm)

2

tmt

)

(27)  

where m is the total amount of injected tracer, Q is the mass flow rate, tm 
= Lav / u and w = uLav / DTr. Lav is the average distance between two 
points (in this case in 3-D, x, y, z). DTr is the Taylor dispersion coefficient 
given as: 

DTr =
2

105

(

u
h
2

)2 1
D0

(28) 

In the fracture-matrix model, a large fracture surrounded by rock 
matrix blocks with micro-fractures is considered. The longitudinal 
dispersion is ignored to distinguish this model from the single fracture 
model. The concentration in the observation well can be estimated as: 

Cfm =
mH(t − tm)

Q

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
tm

π u
Lav

(
h2

D0ϕm

)

√
√
√
√
√

1
(t − tm)

3/2 exp

⎛

⎜
⎜
⎜
⎝

−
tm

u
Lav

(
h2

D0ϕm

)

(t − tm)

⎞

⎟
⎟
⎟
⎠

(29)  

ϕm is matrix porosity. H(t - tm) is the Heaviside step function. 
Welty & Gelhar (1994) proposed four approximate analytical solu

tions for tracer test analysis. Three solutions developed by Welty & 
Gelhar (1994) for radial flow and two-well tracer tests do not take into 
account the flow velocity in the field and require the travel time of the 
tracer as an input. Only one of the solutions addresses non-uniform flow 
effects to determine longitudinal dispersivity from tracer tests in aqui
fers. This solution relies on the variable-velocity conditions of a steady 
non-uniform flow field and conserves the total mass of the tracer in a 
stream tube. The equation derived for a pulse input of a tracer mass is 
given as: 

CWG =
mp

ρlv(x0)
̅̅̅̅̅̅̅̅̅̅̅̅̅
4παLω

√ exp
[

−
η2

4αLω

]

(30)  

CWG is the mass fraction of the tracer, mp is the mass of injected tracer 
per unit cross-sectional area of aquifer, ρl is the density of tracer solu
tion, v is the seepage velocity, x is the location, ω and η are the integrals 
that account for the variable dispersion effect as a result of the changing 
velocity field. The integrals ω and η are defined as: 

ω =

∫x

0

1
v(x)2 dx (31)  

x is the mean location of the pulse front. 

η =

∫x

0

1
v(x)

dx − t (32) 

As the fifth model used for comparison in the study, a convection- 
dispersion model by Houseworth et al. (2013) was chosen, which in
cludes variable diffusion and dispersion between matrix and fracture for 
solute tracer transport: 

CH =
Cm
̅̅̅̅̅̅̅̅̅̅̅̅
4πD∗t

√
̅̅̅̅̅̅̅̅̅̅
D∗tπ

√ [

erf
(

uf t − z
2
̅̅̅̅̅̅̅
D∗t

√

)

− erf
(

umt − z
2
̅̅̅̅̅̅̅
D∗t

√

)]

(33)  

uf and um are the flow velocities in fracture and matrix, respectively, and 
Cm = 1. The parameter z can also be specified as the average distance. 
The time-averaged longitudinal diffusion/dispersion coefficient is: 

D∗ =
1
t

(

D∗
f

z
uf

+D∗
m

(

t −
z
uf

))

(34)  

in which Df* = DL / Rf and Dm* = DL / Rm. DL is the longitudinal 
dispersion coefficient, Rf and Rm are retardation factors for fracture and 
matrix, respectively. 

2.3. Monte-Carlo simulations 

In the workflow, we apply the ASMLS model in an exhaustive Monte- 
Carlo analysis to identify feasible ranges and distributions of anisotropic 
flow velocities (x, y, z), longitudinal and transversal dispersivities. In 
this analysis, a sufficiently large number of uncertain model parameter 
values is randomly generated by sampling from predefined distribu
tions. Each sample simulation is tested by computing a square error 
function to quantify the fitness between the calculated and measured 
tracer BTCs. Feasible parameter ranges are identified by selecting a set of 
best-fit results. 

In the Monte-Carlo simulations, triangular distributions are assumed 
in curve analysis, which is a straightforward procedure and nearly ap
proximates a lognormal distribution of a BTC obtained from the tracer 
test. This is because the triangular distribution provides a continuous 
and bounded probability in a triangular area providing lower-upper 
limits and a most likely value such as a lognormal distribution. We 
defined a triangular probability distribution function as: 

Pj(i) = Pj min + X
(
Pj max − Pj min

)
(35)  

P is the value of the desired parameter for estimation, bounded with 
upper and lower limits; X is the random variable that generates random 
numbers for each iteration within the range 0 < X < 1. The subscript j 
denotes the parameter, i is the number of realization. The square error 
function is defined as (Wu et al., 2021): 

Rj(i)=
1
ξ2

e

[(
ci peak

cmea peak
− 1
)2

+

(
ti peak

tmea peak
− 1
)2

+

(
ti 1

tmea 1
− 1
)2

+

(
ti 2

tmea 2
− 1
)2
]

(36)  

the subscript i denotes the Monte-Carlo simulation results, mea the 
measured data, peak the maximum value of the concentration. The 
corresponding arrival time is tpeak; t1 and t2 are the beginning and the 
end of the BTC, respectively. For each realization, we found the begin
ning and the peak of the BTC. The beginning and the end of the curve are 
determined in an iterative process. In the first step, a threshold value is 
set (e.g., 0.1) and concentrations larger than the threshold value are 
determined. In the second step, the large value differences along the 
dataset array are evaluated with a special function in MATLAB, diff(c), 
and the indices of the high difference points on the curve are found as 
the beginning and the end of the curves. In our application, the end 
value of the BTC is ignored since the measured tracer data is not (fully) 
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available after the peak concentration. There are two major reasons to 
stop the measurement in the field after the peak arrival time: (i) the 
concentration that is arrived at some observation wells is low and 
further concentration recordings are increasingly influenced by disper
sion; (ii) the peak arrival time reaches more than a year which is 
considered a sufficiently long duration for the tracer measurements in 
the field. 

ξe is the standard error of the mean that can be estimated as: 

ξe =
ξ̅
̅̅̅
N

√ (37)  

ξ is the standard deviation of the measurement dataset in dimensionless 
form (c/cmax) and N is the number of measured data. 

2.4. Geological settings of case study and field tracer test 

The advantages and disadvantages of the ASMLS model are 
demonstrated with a field tracer test conducted in the Kızıldere 
geothermal field, Turkey. The Kızıldere field is bounded by oblique-slip 
normal faults with various orientations, and more than 80 wells are 
actively operated. Therefore, managing and ideally avoiding thermal 
interference and pressure depletion between adjacent wells is of high 
importance to ensure productivity and long-term sustainability. This 
study only focuses on a part of the geothermal field where the injection 
and production activities are intensive. That is why it is of major interest 
to inspect the existence and relevance of hydraulic connectivity between 
densely positioned wells. The geological model of the Kızıldere 
geothermal field was constructed based on information gathered from 
geophysical surveys and borehole data obtained from the wells. Four 
major faults create a combination of sinks and sources between shallow 
and deep hydrothermal reservoirs in the region of interest (Fig. 3a). This 
combination results in various 3-D flow paths in different directions and 
complicates the estimation of representative reservoir parameters. As 
shown in Fig. 3b, some of the production and injection wells intersect a 
single fault zone (Fault-2) where two previous tracer injection tests were 
performed to explore the connectivity (Akın et al., 2016). The injection 
was carried out at the shallow wells and monitored from the deeper 
production wells along the Fault-2. These tracer surveys are suitable to 

examine the ASMLS model. For our study, the four production wells 
located closely to the injection wells were considered. 

There are several types of tracer compounds such as traditional 
tracers like salts (Day 1977; Lei et al., 2010) and dyes (Abrahams et al., 
1986; Flury and Wai, 2003), reactive tracers (Leecaster et al., 2012), 
DNA-tracers (Kong et al. (2018) and thermally sensitive tracers (Haw
kins et al., 2017). Often, thermally sensitive tracers such as naphthalene 
sulfonates, Amino G, and rhodamine WT were applied to evaluate the 
thermal state of a geothermal system (Rose and Clausen, 2014; 2017). 
Two types of naphthalene sulfonate compounds, whose thermal decay 

Fig. 3. a) Geological settings of the segmented geothermal reservoir of Kızıldere. The surface highlighted in red color defines the lower boundary of the shallow 
reservoir. b) Illustration of the injection (blue) and production (red) wells intersecting fault-2. Tracer is injected into Well-Kinj and Well-Linj and monitored at the 
production wells (Well-Apro, -Bpro, -Cpro, and -Hpro). 

Table 1 
Cartesian coordinates of wells where the Fault-2 is approximately intersected, 
and mean distances from tracer injection wells to the monitoring production 
wells. The coordinates are based on Fig. 3b.  

Well 
ID 

Coordinates (m) Mean distance to 
Well-Kinj, Lav (m) 

Mean distance to 
Well-Linj, Lav (m) 

x (m) y (m) z (m) 

Well- 
Kinj 

750 1140 750   

Well- 
Linj 

1810 700 1320   

Well- 
Apro 

800 730 1500 880 1025 

Well- 
Bpro 

735 210 2455 1820 1690 

Well- 
Cpro 

500 285 2310 1960 1660 

Well- 
Hpro 

800 550 1750 1270 1150  

Table 2 
Parameter range settings for global sensitivity analysis.  

parameter ux (m s − 1) uy (m s − 1) uz (m s − 1) αL 

(m) 
αT (m) 

range 1 × 10− 7 - 1 
× 10− 3 

1 × 10− 6 - 1 
× 10− 3 

1 × 10− 6 - 1 
× 10− 3 

1 - 
600 

0.1 - 
250 

The number of Monte-Carlo realization points: 50,000. 
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kinetics are suitable for use in reservoirs with temperatures up to 300 ◦C 
(Rose et al., 2001, 2002), are used as tracers at Kızıldere. The reservoir 
temperature is as high as 242 ◦C at around 2000 m depth (Şimşek, 
2003). The tracer compounds, with a mass of 200 kg of 1-naphthalene 
sulfonate, and the same amount of 1,6-naphthalene disulfonate were 
separately mixed with the effluent fluid and injected in the injection 
wells Well-Kinj and Well-Linj, respectively. Both of the tracer injections 
were completed in less than an hour. In the analytical model, the line 
source length H is specified based on the well screen of each injection 
well and it is assumed that the tracer is uniformly injected along with the 
fully penetrated well screen. For instance, the total amount of tracer 
injected in one hour into Well-Kinj was 200 kg. This amount is simply 
divided by the well screen of Well-Kinj as 150 m, which means that cL 
must be specified as 1.33 × 106 mg m− 1 h− 1 in the analytical model 
depending on the time interval in the convolution (i.e., 370 mg m − 1 s −
1). Similarly, the well screen of Well-Kinj is 400 m long. The coordinates 
and the average distances between injection and production wells that 
were used in calculations are given in Table 1. 

In the ASMLS model, there are five unknown parameters (flow ve
locities in x-, y-, z-directions, and dispersivities) to assess with Monte- 
Carlo simulations. Firstly, we applied global sensitivity analysis with 
50,000 realizations to determine the average ranges of each parameter. 

Then, in 5000 realizations, the sensitivity of each parameter was tested 
following a one-at-a-time principle: the value limits of the concerned 
parameter were set in a wide range, while those of the other parameters 
were kept narrow. For instance, the flow velocity in x-direction was 
analyzed within the limits from 1 × 10− 7 to 1 × 10− 3 m s− 1, while for 
other parameters such as longitudinal dispersivity a tight limit of 200 to 
300 m was set, and the other velocities are bounded between 1 × 10− 6 

and 1 × 10− 5 m s− 1. The range of the parameters and settings for global 
sensitivity and the local sensitivity analysis are given in Tables 2 and 3. 

The calculation with all 5000 realizations in MATLAB took a 
computational time of 50 min (Hardware specifications: Intel Core 
i7− 9750H CPU @ 2.60 GHz processor with 16 GB of RAM). The ASMLS 
model was derived based on the convolution approach in which the 
impulse of injection is considered with implicit time steps. Therefore, 
the runtime of each realization is longer compared to applying analytical 
solutions without convolution. 

2.5. Numerical model 

The numerical model is employed after the analytical analysis to 
examine the solute residence time distribution in greater detail that is 
affected by dispersion in a large-scale geothermal reservoir. A 3-D local 
numerical model is constructed based on the previously prepared 
geological model (Fig. 3a). In addition to the six wells depicted in 
Fig. 3b, the neighbor injection and production wells where the tracer 
test was conducted are also included in the numerical model (Fig. 4b). 
Heat and mass fluxes obtained from a full field model and affected by 
wells outside of this local model are implemented at the boundary cells 
(Erol et al., 2022). For this, the EOS1 flow module of the numerical 
modeling platform TOUGH2 (2021) is used, which couples flow and 
solute tracer transport in a non-isothermal system. A fixed-state 
boundary condition is defined at the top of the model. The model is 
run until the pressure (P) and temperature (T) gradients have reached 
the natural state conditions of the field (e.g., over 100,000 years) and 
fitted to static measurements obtained from the wells as a function of 
depth. The preconditioned bi-conjugate gradient is selected as solver 
and the maximum relative error criterion is set to 1 × 10− 7. A mesh with 
39,375 regular grid blocks is generated (Fig. 4a), which allows 

Table 3 
Parameter range settings for local sensitivity analysis following a one-at-a-time 
principle.  

Interested 
parameter 

ux (m s − 1) uy (m s − 1) uz (m s − 1) αL (m) αT (m) 

ux 1 × 10− 7 - 
1 × 10− 3 

1 × 10− 6 - 
1 × 10− 5 

1 × 10− 6 - 
1 × 10− 5 

200 - 
300 

75 - 
100 

uy 1 × 10− 5 - 
1 × 10− 3 

1 × 10− 7 - 
1 × 10− 3 

1 × 10− 5 - 
1 × 10− 3 

200 - 
300 

75 - 
100 

uz 1 × 10− 5 - 
1 × 10− 3 

1 × 10− 5 - 
1 × 10− 3 

1 × 10− 7 - 
1 × 10− 3 

200 - 
300 

75 - 
100 

αL 1 × 10− 5 - 
1 × 10− 3 

1 × 10− 5 - 
1 × 10− 3 

1 × 10− 5 - 
1 × 10− 4 

1 - 600 75 - 
100 

αT 1 × 10− 5 - 
1 × 10− 3 

1 × 10− 5 - 
1 × 10− 3 

1 × 10− 5 - 
1 × 10− 4 

200 - 
300 

0.01 - 
250 

The number of Monte-Carlo realization points for each parameter: 5000. 

Fig. 4. The numerical model setup. a) Illustration of the grid and geological settings. b) The well locations and flow paths are depicted in different colors. Subscript 
pro represents production, and inj describes injection. 
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specifying permeability in three directions (x, y, z), which is more 
flexible than for example Voronoi grids (x, y = z). The discretized block 
area is 1600 m2 near the wells and expands to 6000 m2 towards the 
boundaries. The model is subdivided into 25 layers with variable 
thicknesses ranging from 40 m to 170 m. Flow paths are created between 
the wells as shown in Fig. 4b. The matrix permeability in each direction 
is defined as nearly impermeable as 1 × 10− 16 m2 with a matrix porosity 
of 0.04. The effective fracture permeability values in x-, y-, z-directions 
are calibrated and specified based on the velocity field determined from 
the tracer data-ASMLS model matches. 

The multiple interacting continua (MINC) method, which is an 
improved technique of the dual-porosity model described by Warren & 
Root (1963), was used for the simulations (Pruess, 1992). For example, 
Fayer et al. (2009) assessed thermally degrading tracers in injection tests 
with the MINC method implemented in the TOUGH2 simulator. In the 
ASMLS model, dispersivities αL and αT can be obtained by matching 
field-measured concentrations, but these parameters are not recognized 
in the TOUGH2 simulator. Therefore, the obtained dispersivities are 
defined as matrix block sizes in TOUGH2. The longitudinal one in the 
x-direction and transverse one in y- and z-directions are specified 
accordingly. The dispersivity does not perfectly correspond to the matrix 
block scale, but this assumption is expected to alleviate matching be
tween tracer measurements and numerical results. In the following, it is 
tested whether the numerical dispersion in the TOUGH2 simulator with 
the MINC approach is suitable to represent the macro-dispersion char
acterized by the ASMLS model while examining the BTC tailing behavior 
of the tracer and its residence time distribution. 

Here, we assume an equivalent permeability approach for the frac
tured medium in the ASMLS model. In dual-porosity systems, it is 
assumed that the fluid flow from the matrix to fractures is in a steady- 
state condition (Warren and Root 1963). As time goes to infinity, at 
the end of the flow path both in fracture and matrix, the pressure drops 
must be identical. Therefore, the fluid flow velocity either in a porous 
medium or in the fractured medium can be assumed the same. Firstly, 
the flow velocities are determined with the new analytical model fitting 
to the tracer data. Following that, the flow velocity is used to estimate 
the porous permeability with Darcy’s law given the pressure difference 
between the considered wells. Subsequently, this permeability is 
assumed equivalent to fracture permeability. Thus, the cubic law is 
applied to estimate the fracture aperture (the porous permeability with 
Darcy’s law = fracture permeability κf = h3/12 according to the cubic 
law). The convection-dispersion-diffusion was assumed to be valid, 
disregarding some other approaches, which consider more complex 
transport phenomena in fractured media controlled by fracture 
geometrical properties, including tortuosity, fracture roughness, and 

connectivity. 
A sudden pulse tracer injection within a short period (i.e., 200 kg in 

15 min) causes convergence problems in TOUGH2, even if the relative 
tolerance and time step are set to considerably small values (specified 
time step such as 1 s and relative tolerance of 1 × 10− 7). Recently, 
Tómasdóttir (2018) proposed a transformation method that could be 
used to tackle convergence issues in TOUGH2. According to this 
approach, the specified tracer injection rate is multiplied with injection 
time, and the real amount of the tracer injected in the field is divided by 
the total tracer amount defined in TOUGH2. This ratio is multiplied by 
the mass fraction of the tracer and the flow rate at the well grids. Using 
this method, the tracer injection rate in TOUGH2 is specified as 30 kg s −
1 injected in 7000 s (7000 s × 30 kg/s = 2.1 × 106 kg injected in the 
numerical model, 200 kg real tracer / 2.1 × 106 kg → λ = 9.5238 ×
10− 4). In the numerical model, the calculated tracer mass fraction, χ, 
and production flow rate in the intersected grid, Q, is multiplied with the 
scaling parameter λ to tackle convergence issues due to a large mass of 
tracer. If the production well intersects multiple grids, the observed 
tracer concentration can be calculated as c = λ 

∑
χiQi / 

∑
Qi, where i 

denotes the number of intersected grids. 

3. Results 

In the workflow, we first apply Monte-Carlo simulations with the 
ASMLS model to determine values for the unknown parameters in the 
form of distributions. The concentrations are calculated at the point 
coordinates nearest to the observation well where Fault-2 is intersected 
(Fig. 3). Fig. 5 shows the scatter plots between parameters and the total 
misfit of a tracer concentration measurement at the observation Well- 
Apro. The scatter plot of the parameters ux and αL cover a broad range 
whereas the feasibility range of uy and αT are evaluated at a more 
optimal point. The reason is that Fault-2, where the fluid flow is domi
nant, intersects Well-Kinj and Well-Apro in the aligned y-axis. The 
transversal αT and longitudinal dispersivity αL are at a clearer feasibility 
range on the misfit function Rfit due to the dominant vertical flow di
rections uy and uz and the vertical heterogeneity. In other wells, we 
observed similar outputs in that the flow directions of the injection and 
observation wells are aligned on the vertical axis resulting in the total 
misfit at a clearer range for the flow velocity uy and uz. 

The ASMLS model results are compared with other approximate 
solutions by fitting each model with the tracer data injected into Well- 
Kinj and measured at Well-Apro. The results are plotted in a dimensionless 
form in Fig. 6. The estimated values of the parameters obtained from the 
fits for the case where the tracer was injected in Well-Kinj and monitored 

Fig. 5. Monte-Carlo simulation results of the tracer transport (Well-Apro). The 
misfit function Rfit is plotted as a function of flow velocity in x- and y-directions 
(a and b), longitudinal and transversal dispersivities (c and d). Each point 
represents a realization. Tracer was injected into Well-Kinj. 

Fig. 6. Analytical models are fitted to measured tracer data (Well-Apro). The 
models used are the ASMLS model (Eq. (23)); the uniform porous medium 
model, Eq. (25) (Sauty, 1980); the single fracture and fracture-matrix models, 
Eq. (27) - Eq. (29) (Bullivant and O’Sullivan, 1989); non-uniform flow model 
Eq. (30) (Welty and Gelhar 1994); and the fracture-matrix model Eq. (33) 
(Houseworth et al., 2013). Tracer is injected into Well-Kinj. 
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at Well-Apro are given in Table 4. The advantages and disadvantages of 
the analytical models are discussed in Section 4. According toChi
lingarian et al. (1992), fracture porosity typically ranges from 0.1% to 
3% and they demonstrate a correlation between fracture aperture and 
fracture porosity. Based on this correlation, we determined the fracture 
porosity corresponding to the fracture aperture that is evaluated from 
the cubic law. The fitted models fairly match the field data except for the 
fracture-matrix model given by Eq. (29) (Fig. 6). The fracture aperture 
and flow velocity are specified similarly both in the single fracture and 
fracture-matrix models of Bullivant & O’Sullivan (1989) as shown in 
Table 4. However, as dispersion is neglected in Eq. (29), the 
fracture-matrix model shows a sharper peak around the mean arrival 
time of the tracer compared to the single-matrix model. Instead, the 
matrix porosity affects the result in this fracture-matrix model. Larger 
matrix porosity delays the mean arrival time and shifts the tracer con
centration over a longer period, whereas smaller matrix porosity causes 
sudden breakthrough behavior without dispersion but facilitates fitting 
the mean arrival time. 

For further analysis, the analytical ASMLS model is coupled with 

Monte-Carlo simulations to fit the measured tracer data monitored in 
other observation wells in the reservoir shown in Fig. 3b. Eq. (23) is 
calibrated for each injection and observation well couple separately (e. 
g., Well-Kinj to -Apro, Well-Kinj to -Bpro, etc.). Results are reported in 
Table 5 and the fits are depicted in Fig. 7. Flow velocities are mainly 
stimulated by the forced convection between the injection and produc
tion (tracer observation) wells. The flow velocity in the x-direction is 
one order of magnitude faster compared to y- and z-directions, but the 
observation wells are located in y- and z-axes directions where the ve
locity is slower. In contrast, we found that absolute permeability is 
larger in the z-axis direction. The reason is that the pressure gradient is 
small (i.e., low-pressure gradient). Longitudinal dispersivity value of 
260 m with a field-scale of around 2500 m is in accord with the ranges 
reported by Gelhar et al. (1992) and Neuman (1990) (e.g., αL = 102 to 
103 m for scales ranging from 103 to 104 m). 

During the Monte-Carlo application of the ASMLS model, the feasible 
range is obtained with a transversal dispersivity that is around 0.4 times 
smaller than the longitudinal dispersivity. According to Gelhar et al. 
(1992), vertical transverse dispersivity is typically an order of magni
tude smaller than longitudinal dispersivity, which however may differ 
among different field sites. The reason can be attributed to the fractured 
medium and the oblique-slip fault orientations which are perpendicular 
to the surface with the dip angle around 45◦. 

The parameters given in Table 5 are derived with Monte-Carlo 
simulations by matching the ASMSL model to field data. The obtained 
values are assigned in the 3-D numerical TOUGH2 model for simulating 
flow and transport (Fig. 4b) to examine the residence time distribution 
and to check the consistency of the ASMLS model. The permeability is 
estimated with Darcy’s law based on the evaluated flow velocities. Based 
on this, the permeability of the porous medium is assumed equivalent to 
fracture permeability κf = h3/12 according to the cubic law. 

As depicted in Fig. 7, the tracer is injected into Well-Kinj located at 
the northern part of the model. The first and mean arrival times of the 
numerical results match well with the measured data at the production 
wells, but the simulation roughly overestimates the tracer amount after 
the mean arrival time. The dispersion in the numerical model is stronger 
due to the matrix blocks having a fractal structure. The dispersed and 
mixed solute tracer continues to reach the production well from the 
surrounding flow paths, whereas we cannot take into account this effect 
in the ASMLS model. Therefore, the solute residence time is larger in the 

Table 4 
Comparison of parameters obtained by simulating tracer test data in different analytical models.  

Analytical models ϕ (i) a h (m) b u (m s − 1) Peclet number c α (m) 
ux uy uz Pex Pey Pez αL αT 

ASMLS model, Eq. (23) ϕf ≈ 0.025 1 × 10− 4 4 × 10− 4 3 × 10− 5 6 × 10− 5 13 1.3 2.1 260 αL × 0.4 
Sauty (1980) – uniform porous model, Eq. (25) – – 5.5 × 10− 5 PeL = 0.4; PeT = 9 150 αL × 0.2 
Bullivant & O’Sullivan (1989) – Single fracture, Eq. (27) – 3 × 10− 3 3.5 × 10− 5 Pe = 100 – – 
Bullivant & O’Sullivan (1989) – fracture-matrix, Eq. (29) ϕm = 0.005 3 × 10− 3 7 × 10− 5 Pe = 150 – – 
Welty & Gelhar (1994), Eq. (30) ϕm = 0.025 – v = u / ϕm = 0.012 u = 3 × 10− 4 – 104 – 
Houseworth et al. (2013) –fracture-matrix, Eq. (33) – 2 × 10− 4 uf = 4.4 × 10− 5; um = 4 × 10− 5 Pef = 9 Pem = 8 – –  

a Fracture porosity value was taken fromChilingarian et al. (1992) according to the fracture aperture. b Fracture aperture was determined based on the cubic law (see 
Section 2.5). c PeL = Δx / αL, PeT = Δy / (αL αT)− 1/2, Δx = 62 m, Δy = 607 m. Pef = ufh / D0, Pef = umd / D0, D0 = 1 × 10− 9 m2 s − 1. 

Table 5 
Parameter values were obtained by matching tracer measurements between Well-Kinj and the production wells with the ASMLS model.  

From Well-Kinj to other wells Δz (m) ΔP a (MPa) R (i) u (m s − 1) κ (m2) b α (m) 
ux uy uz κx κy κz αL αT 

Well-Apro 750 7 1.65 4 × 10− 4 3 × 10− 5 6 × 10− 5 6 × 10− 13 4 × 10− 13 1.3 × 10− 12 260 αL × 0.4 
Well-Hpro 1000 8 1.2 4 × 10− 4 2 × 10− 5 6 × 10− 5 2 × 10− 13 3 × 10− 13 1.2 × 10− 12 260 αL × 0.4 
Well-Cpro 1500 10 1.2 1.3 × 10− 4 2 × 10− 4 4 × 10− 5 6 × 10− 13 3 × 10− 12 1 × 10− 12 260 αL × 0.4 
Well-Bpro 1600 11 1.2 4 × 10− 4 6.5 × 10− 5 6 × 10− 5 9 × 10− 13 1 × 10− 12 1.3 × 10− 12 260 αL × 0.4  

a Values are obtained from the TOUGH2 numerical model after the hydraulic regime has reached steady-state conditions. μ = 0.16 × 10− 3 at temperature of 230 ◦C. b 

Absolute permeability calculated with Eq. (24) with the flow velocities. The permeability values were transferred to the TOUGH2 simulator as fracture permeability 
approximated using the cubic law. 

Fig. 7. Match between the ASMLS model response (Eq. (23)) and tracer mea
surements and comparison with the numerical model results. The parameters 
specified in the numerical model are listed in Table 5. Tracer is injected into 
Well-Kinj. 
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numerical model. Further sensitivity analysis with the numerical model 
revealed that the specified fracture porosity has an impact on the tracer 
amount obtained at the production well. Smaller fracture porosity 

causes faster fluid flow velocity due to a larger pressure gradient. 
Therefore, the tracer front-advection is more dominant and a larger peak 
is observed. In contrast, larger fracture porosity decreases the fluid flow 
velocity and the tracer disperses through matrix blocks. This hampers 
the detection of a clear peak in the BTC. The matrix permeability has a 
minor impact on the mean arrival time because the advection is pre
dominant through fractures and the arrival time of the tracer is not 
affected. 

Furthermore, tracer BTCs observed in production wells as a result of 
tracer injection into Well-Linj located in the eastern part of the field are 
analyzed (Fig. 3). For this case, the evaluated parameters obtained from 
the Monte-Carlo simulations are reported in Table 6. In particular, 
permeability values are in line with the values for the first injection case 
shown in Table 5. The wells Apro and Hpro are located at shallower 
depths compared to the deeper wells, Bpro and Cpro. As a result, κy is 
larger at a shallower depth (1000 m to 1500 m) and slightly decreases at 
the deeper reservoir sections (2000 m to 3000 m). In contrast to κy, κz 
shows opposite behavior at identical depths compared to Table 5. Drill 
cuttings and well-log data show that quartzite-schist is found at some 
shallower and deeper sections of the reservoir. These formations contain 
platy minerals such as muscovite laminations that may act as barriers 
and enhance the anisotropy of the permeability with increasing shear 
stress of the faults (Zhang et al., 1999; Almqvist et al., 2011). 

The permeability values given in Table 6 are specified in the 
TOUGH2 numerical model using the aforementioned simulation 

Table 6 
Results were obtained from fitting the analytical ASMLS model (Eq. (23)) to tracer measurements. Parameters were determined for tracer tests between Well-Linj and 
the production wells listed.  

From Well-Linj to other wells Δz (m) ΔP a (MPa) R (i) u (m s − 1) κ (m2) b α (m) 
ux uy uz κx κy κz αL αT 

Well-Apro 250 2 1.15 8 × 10− 6 4.5 × 10− 5 6.5 × 10− 5 6 × 10− 13 2 × 10− 13 1.3 × 10− 12 260 αL × 0.4 
Well-Hpro 600 6 1.15 8 × 10− 6 5.5 × 10− 5 9 × 10− 5 2 × 10− 13 3 × 10− 13 1.5 × 10− 12 260 αL × 0.4 
Well-Cpro 1000 8 1.15 1.4 × 10− 5 1.3 × 10− 4 4 × 10− 5 3 × 10− 13 1 × 10− 12 8 × 10− 13 260 αL × 0.4 
Well-Bpro 1100 10 1.15 1.1 × 10− 5 1.4 × 10− 4 4.5 × 10− 5 2 × 10− 13 1 × 10− 12 8 × 10− 13 260 αL × 0.4  

a Values are obtained from the TOUGH2 numerical model while pressure difference reaches steady-state conditions. μ = 0.16 × 10− 3 at 230 ◦C temperature. b 

Absolute permeability is calculated with Eq. (24) as explained in Table 5. 

Fig. 8. Fitting between the analytical ASMLS model response (Eq. (23)) and 
tracer measurements, and comparison to the numerical model results. The 
parameters specified in the numerical model can be found in Table 6. Tracer is 
injected into Well-Linj. 

Fig. 9. Injected tracer amount along Fault-2 calculated with the analytical ASMLS model (in mg m − 3). a) Results after 10 days of injection. b) Results 300 days after 
tracer is released. 200 kg of tracer is released from Well-Linj (400 m screen length considered for the line source). Mean flow velocities are specified according to 
Table 6 as above 1500 m depth: ux = 8 × 10− 6, uy = 5 × 10− 5, uz = 7 × 10− 5; below 1500 m depth: ux = 1 × 10− 5, uy = 1 × 10− 4, uz = 4 × 10− 5. 
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procedure. The matrix properties are specified identical as in the pre
vious case. The results of the numerical model demonstrated in Fig. 8 for 
the Well-Linj injection case show delayed and shifted arrival of the peak 
at Well-Bpro, most likely due to the dispersed solute tracer through cross- 
flow paths between matrix blocks and leading to longer solute residence 
time distribution. This indicates that rendering the macro-dispersivity 
values obtained from the ASMLS model by the numerical model by 
block sizes is not appropriate due to the conceptual numerical as
sumptions. Moreover, Fig. 8 also shows that the peak concentration is 
overestimated at Wells Hpro and Apro. The distance is closer between 
these wells and Well-Linj compared to Well-Bpro and Well-Cpro. Here, the 
advection dominates the flow along a preferential path with a minor 
contribution from dispersion, causing a faster transport and larger tracer 
concentration observed at the production wells. Due to low dispersion, 
the solute residence time observed at Wells Hpro and Apro is short. 

These discrepancies between the measured and numerical results can 
also be attributed to the injection transformation method in the 
TOUGH2 simulator, proposed by Tómasdóttir (2018) mentioned in 
Section 2.4, may have an impact on the mean arrival times due to a 
longer injection period in the numerical model (i.e., 7000 s). New de
velopments in conditional stochastic transport modeling (Wu et al., 
2021) and multiscale or hierarchical geostatistical modeling (Bodin 
2020) may overcome this inconsistency in fractured reservoirs but re
quires large computational expense. 

The tracer transport visualized in Fig. 9 shows how the injected 
tracer is dispersed at different time frames along Fault-2 calculated with 
the proposed ASMLS model. The tracer is injected into Well-Linj and 
propagates mainly in the z-axis along the deeper part of Fault-2. After 10 
days of tracer injection, the largest tracer amount is calculated around 
1200 mg m− 3 that has moved approximately 200 m to the deeper 
reservoir sections (Fig. 9a). The tracer plume is spread through Fault-2 
after 300 days at which the mean arrival time is detected for the tracer at 
the observation wells. The tracer plume where the largest tracer amount 
is calculated around 14 mg m− 3 at the center, penetrates through the 
deeper parts of the reservoir (Fig. 9b). 

4. Discussion 

The workflow employs an analytical model coupled with Monte- 
Carlo simulations for characterizing complex geothermal reservoirs. 
The ASMLS model provides an anisotropic flow field triggered by forced 
convection between injection and production wells, whereas other ap
proximations assume uniform or non-uniform flow velocities. Specif
ically, Sauty’s uniform porous model gives dispersivity values. 
Compared to the ASMLS model, the longitudinal and transverse dis
persivities are relatively small in Sauty’s approximation. The reason can 
be attributed to the reduced dimensional flow, which may lead to a 
smaller apparent 2-D dispersivity. The model of Welty & Gelhar (1994) 
accounts for the variable-velocity conditions of a flow field, but the di
rection of the flow is still uniform. In other words, the flow velocity 
varies in a single direction. Compared to the other models, the dis
persivity value obtained from the solution of Welty & Gelhar (1994) is 
two orders of magnitude larger. The reason is that the integration of flow 
velocity over distance (Eq. (31) and Eq. (32)) has an impact on the 
dispersion that is evaluated. As the distance increases in the field (e.g., 
1000 m distance between the wells), the dispersion value significantly 
increases with the model developed by Welty & Gelhar (1994). The 
model of Houseworth et al. (2013) is based on separated flow mecha
nisms both in fracture and matrix. However, the fit of tracer data is 
achieved with similar flow velocities in fracture and matrix. When 
compared to the model of Bullivant & O’Sullivan (1989), the fracture 
aperture is one order of magnitude larger and Eq. (34) takes into account 
dispersion and retardation through fracture and matrix, which yields an 
increase of the tracer arrival time (D* in Eq. (34) becomes 3 × 10− 3 m2 

s− 1). Comparison of Peclet numbers indicates that the transversal 

propagation is stronger in Sauty’s model. Roubinet et al. (2012), who 
inspected the transverse dispersion effect in a 2-D fracture-matrix flow, 
demonstrated that the longitudinal diffusion in the matrix is crucial at 
low Peclet numbers, whereas the transverse dispersion in fractures has a 
minor impact on solute transport. However, Sauty’s approximation to 
estimate Peclet number (PeL = Δx / αL, PeT = Δy / (αL αT)− 1/2) is based 
on the given coordinates that are specified rather than actual fracture 
aperture or equivalent pore diameter. Aside from this, Peclet numbers 
calculated using the proposed analytical ASMLS model show similarities 
in opposite directions between Pex ≈ PeT and Pey ≈ PeL due to dimen
sional differences in calculations. All of the aforementioned approxi
mations provide similar uniform flow velocities, which correspond to 
the flow velocities in the y- and z-direction, with the observation well 
located on flow axes of y and z in the proposed model. The dispersivity is 
an additional parameter facilitating accurate matches with the 
measured data. 

The ASMLS model provides similar outputs but has some major ad
vantages such as evaluation of anisotropic flow velocities and allowing 
pulse tracer injections into multi-well systems in which the duration of 
the injection can also be adjusted. In contrast to other analytical solu
tions, the calculation of the ASMLS model is somewhat larger due to the 
convolution technique in which the unit impulse (i.e., tracer injection) 
was convoluted explicitly over time. As the required time interval be
comes smaller, the runtime of the convolution takes longer. For instance, 
fitting a tracer test measurement for one year with an hour time interval 
takes three seconds for each stochastic random variable. This is a 
disadvantage for statistical Monte-Carlo simulations in which the anal
ysis may consist of thousands of realization values to determine a 
confident interval for unknown parameters. 

The use of the ASMLS model for fractured media application is only 
feasible when the hydraulic conditions can be similarly described by an 
equivalent porous media. We assumed an upscaled equivalent with 
respect to the Peclet number, and the macro-dispersivity reflects scale 
effects of heterogeneous media (Gelhar et al., 1979). This is supported 
by Neuman (1994; 2008) indicating that the volume-averaged fractured 
rock properties exhibit similarities to that of porous media. In addition, 
Neuman (1987; 2005) and others (Ando et al., 2003; Neuman and Di 
Federico, 2003) suggest that flow and transport equations developed for 
the fractured rocks are amenable to the equations derived for porous 
media. In contrast, Zech et al. (2015) state that available scale laws are 
quite arbitrary, and fractured rocks cannot be defined by Fickian laws. 
However, Neuman (2016) points out that the data sets used by Zech 
et al. (2015) for small-scale values are not sufficient to demonstrate a 
dispersivity scale effect. Still, there exists no consensus on representative 
anisotropies and scaling behavior of dispersivities employed in 
convection-dispersion-diffusion-based models (Park and Lee, 2021; 
Tang and Zee, 2021). A major role for the non-univocal observations is 
played by the diversity of geological conditions. 

The comparison between macro-dispersivity and the numerical dis
persivity in the numerical simulation with the MINC approach demon
strates that the numerical dispersion parameters with the nested matrix 
blocks to represent the macro-dispersion of a tracer are not relevant. In 
the numerical model, dynamic flow factors such as low-permeability 
transition zones between fracture and matrix blocks and preferential 
flow paths dominantly control the transport process of the tracer that 
affect the results. The matrix-fracture functions are based on the ge
ometry of the matrix and fractures (i.e., square blocks in the MINC 
approach) that are lumped to a factor called the shape factor (Rostami 
et al., 2020). Perhaps, different geometries and shape factors of 
matrix-fracture systems provide better consistency between 
macro-dispersivity and numerical dispersivity in fractured porous media 
simulations. 

5. Conclusions 

A new workflow for the analysis of a tracer test conducted in a 
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geothermal reservoir is presented. In the workflow, a 3-D analytical 
model for tracer injection is developed to inspect solute transport in an 
anisotropic medium. A Monte-Carlo simulation algorithm is then 
coupled to determine optimal values for unknown reservoir parameters. 
The estimated parameters are used in a more complex numerical model 
to evaluate the solute residence time in a large-scale reservoir and 
benchmark the numerical dispersion against macro-dispersion. 

The ultimate purpose of this workflow is to characterize the course of 
energy depletion in a geothermal reservoir, thus the impact of reservoir 
cooling on the production, and to support optimization of long-term 
injection strategies. 

Embedded in the presented workflow, the ASMLS model is based on 
Green’s function method to facilitate a moving line source of the 
convection-dispersion-diffusion equation for solute transport. After
ward, the derived equation is analytically convoluted with a rectangular 
function of a pulse, which solves the equation in a given period. This 
convolution technique can provide flexibility to model multiple tracer 
injections from several wells in a given time. Several solute tracer 
transport approximations reported in the literature are analyzed and 
compared with the proposed analytical model. The results demonstrate 
that independent of the model type (e.g., uniform porous, fracture- 
matrix, etc.), analytical approaches can be used to determine reservoir 
parameters representative of the Kızıldere geothermal site. However, 
these approximations provide uniform and non-uniform flow parame
ters, which are not adequate to inform a fully-resolving 3-D numerical 
model for detailed geothermal reservoir characterization. This is over
come by the new ASMLS model that yields robust fundamental param
eter values such as those of flow velocities, longitudinal and transversal 
dispersivities in systems. In addition, Monte-Carlo simulations help to 
quantify parameters. 

For the construction of the 3-D numerical model, the evaluated pa
rameters, longitudinal and transverse dispersivities, obtained from the 
analytical model, are used to specify the length, width, and height of 
matrix blocks in a simulated dual porosity system (i.e., the MINC 
approach). Two injection cases from different wells are considered to 
scrutinize solute residence time distribution. In the first case, the 
injected solute tracer mixes and considerably disperses in the numerical 
model due to the matrix blocks having a fractal structure. Therefore, the 
solute residence time is larger in the numerical model. In the second 
case, the injected tracer reaches the production wells, which are close to 
the injection well, with a larger peak concentration and the solute 
residence time distribution is short indicating that dispersion is less 
significant. These comparisons of the two injection cases do not show 
any significant relationship between dispersivity and the matrix block 
sizes. Therefore, dispersivity can be considered separately. This also 
demonstrates that the mechanical macro-dispersion cannot reliably be 
represented by numerical dispersion. The transition between matrix and 
fractures described with block geometries and its defined shape factors 
most likely affect the results in the numerical simulations. Different 
geometries and shape factors of matrix-fracture systems may overcome 
this inconsistency. Alternative concepts of stochastic transport modeling 
and multiscale-hierarchical geostatistical modeling may support exam
ining various geometries and shape factors of those systems to evaluate 
correct numerical dispersion system equivalent to macro-dispersion. 

The presented workflow represents an integrated approach to 
acquiring possible effective parameters from well-to-well tracer data 
while reducing the computational effort and ambiguity to assess 
geothermal reservoir characteristics. It is most suitable for tests con
ducted in reservoirs where significant parameter anisotropy prevails, 
and forced convection between the injection and production wells is 
dominant. The workflow follows a stochastic procedure to determine 
reliable value ranges of unknown parameters. This is crucial for setting 
up a more comprehensive numerical model to analyze the solute resi
dence time distribution, which could be further improved with a more 
detailed geological or geostatistical conceptualization. The ASMLS 
model provides promising estimations of dual-porosity systems under 

steady-state conditions. In contrast, its applicability to dynamic dual- 
permeability would be limited. 

To interpret reactive tracer applications, the analytical model 
developed here accounts for retardation. The retardation factor imple
mented in the model can for instance quantify the effect of sorption of 
biochemical organic tracers. Moreover, for nonconservative tracers, the 
reaction part of the solute transport equation can be implemented to 
take into account first-order decay. (Eq. 2-5, 9, 12, 14, 18, 21, 22, 26, 28, 
35, 37) 
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