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Preface

The thermal use of the shallow subsurface is increasingly promoted and 
implemented as one of many promising measures for saving energy. The 
energy extracted from such systems is referred to as shallow geothermal 
energy or low-enthalpy energy. Open and closed systems are distinguished 
usually consisting of boreholes combined with heat pumps. A series of 
questions arises with respect to the design, the management of under-
ground and groundwater heat extraction systems, such as the sharing of 
the thermal resource, the long-term sustainability of the thermal use, and 
the assessment of its long-term potential. For the proper design of thermal 
systems, it is necessary to assess their impact on underground and ground-
water temperatures.

The theoretical basis of heat transport in soil and groundwater systems is 
therefore introduced, and the essential thermal properties are discussed. In 
the planning and design of geothermal systems, hydrogeological and ther-
mal site investigations have to be combined with modeling. Therefore, a 
series of mathematical tools and simulation models based on analytical and 
numerical solutions of the heat transport equation are presented. Finally, 
some case studies are introduced for illustration.

The book is directed toward MSc students in civil or environmental engi-
neering, engineering geology, and hydrogeology and junior professionals. 
It provides a platform of principles and outlines the essential models and 
parameters to assess and design technical systems for the thermal use of the 
shallow underground.D
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MATLAB® is a registered trademark of The MathWorks, Inc. For prod-
uct information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com
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xix

Symbols

Bold symbols represent vectors and tensors, whereas italic symbols repre-
sent scalar quantities and variables.

_a:  	 Subscript a: air
A:  	 Area (m2)
_b:  	 Subscript b: borehole
B:  	 Boundary
c: 	  Solute concentration in water (kg m−3)
Cm:  	� Volumetric heat capacity of porous medium or aquifer (J m−3 K−1) 

or (W s m−3 K−1)
cs:  	� Specific heat capacity or specific thermal capacity, of solid material 

(J kg−1 K−1)
Cs:  	� Volumetric heat capacity of solid material (J m−3 K−1) or (W s m−3 K−1)
cw:  	� Specific heat capacity or specific thermal capacity of water (J kg−1 

K−1) or (W s m−3 K−1)
Cw:  	 Volumetric heat capacity of water (J m−3 K−1)
D:  	 Aquifer domain
Dh:  	 Hydrodynamic dispersion tensor for solute transport (m2 s−1)
Dt:  	 Thermal diffusion tensor or thermal diffusivity tensor (m2 s−1)
Dt,L:  	 Longitudinal thermal diffusion coefficient (m2 s−1)
Dt,T:  	 Transversal thermal diffusion coefficient (m2 s−1)
E:  	 Energy (J) or (W s)
_f:  	 Subscript f: fluid
f: 	  Depth to groundwater (m)
Fo:  	 Fourier number (–)
g:  	 Gravitational acceleration constant (scalar) (m s−2)
g:  	 Gravitational acceleration gradient (m s−2)
H:  	 Length of vertical borehole heat exchanger (m)
hw:  	 Piezometric head (m)
_i:  	 Subscript i: ice
I: 	  Recirculation rate between two wells (m3 s−1)
Ihor: 	  Horizontal flow gradient (–)

D
ow

nl
oa

de
d 

by
 [

E
T

H
 B

IB
L

IO
T

H
E

K
 (

Z
ur

ic
h)

] 
at

 0
8:

21
 1

8 
O

ct
ob

er
 2

01
6 



xx  Symbols

j:  	 Specific heat flux (W m−2)
J:  	 Heat flux (W) or (J s−1)
jdisp:  	 Dispersive (specific) heat flux (W m−2)
k:  	 Permeability of aquifer (tensor) (m2)
Kw:  	 Hydraulic conductivity of aquifer (tensor) (m s−1)
L:  	 Length scale (m)
Lf:  	 Latent heat of melting/freezing (J kg−1), 3.34 105 J kg−1 for water/ice
m:  	 Aquifer thickness (m)
mVG:  	 van Genuchten parameter (–)
_n:  	 Subscript n: normal direction
n:  	 Unit normal vector (m)
N:  	 Recharge rate per unit surface area (m s−1)
nVG:  	 van Genuchten parameter (–)
_p:  	 Subscript p: pipe
pb:  	 Air entry pressure (Pa)
Pt:  	 Heat production per unit volume (W m−3)
pw:  	 Water pressure (Pa)
q:  	� Specific discharge vector, water discharge rate through unit area 

(gradient) (m3m−2 s−1)
Q:  	 Water discharge rate (m3 s−1)
qtb:  	 Heat flow rate per unit length of the borehole (= J/H) (W m−1)
R:  	 Dimensionless cylindrical radius (–)
Rc:  	 Solute retardation factor (–)
Rt_ret:  	Thermal retardation factor (–)
Rtb:  	 Thermal borehole resistance (K W−1 m−1)
Rtw:  	 Thermal radius of influence (m)
Rw:  	 Radius of influence of a well (m)
_r:  	 Subscript r: residual
r:  	 Radius (m)
rb:  	 Borehole radius (m)
rp:  	 Pipe radius (m)
_s:  	 Subscript s: solid
s:  	 Length (m)
S:  	 Storativity of aquifer, specific yield of unconfined aquifer (–)
Ss:  	 Specific storativity of aquifer (m−1)
Sw:  	 Saturation degree of water (–)
Sw,r:  	 Residual saturation degree of water (–)
_t:  	 Subscript t: thermal
t:  	 Time (s)
T:  	 Temperature (°C or K; 0°C = 273.15 K)
T0:  	 Initial or undisturbed temperature (°C)
Tinj:  	 Injection temperature (°C)
u:  	 Mean flow velocity (gradient) (m s−1)
ut:  	 Thermal velocity (gradient) (m s−1)
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Symbols  xxi

_v:  	 Subscript v: vapor
V:  	 Volume (m3)
vf:  	 Volumetric fraction (–)
_w:  	 Subscript w: water
w:  	� Water source/sink term, water volume per unit aquifer volume and 

unit time (m3 m−3s−1)
W:  	 Source/sink term in two-dimensional flow equation (m3 m−2 s−1)
x:  	 x-coordinate (m)
x:  	 Location vector (m), with coordinates (x, y, z)
y:  	 y-coordinate (m)
z:  	 z-coordinate (m), positive upward
α:  	 Angle (rad or °)
αL:  	 Longitudinal dispersivity for solute transport (m)
αT:  	 Transversal dispersivity for solute transport (m)
αVG:  	 Van Genuchten parameter (m)
β:  	 Angle (rad or °)
βL:  	 Longitudinal thermal dispersivity of aquifer (m)
βT:  	 Transversal thermal dispersivity of aquifer (m)
γ:  	 Euler’s constant (–) = 0.5772…
Δ:  	 Finite increment
θ:  	 Dimensionless temperature (–)
θa:  	 Volumetric air content (m−3 m−3)
θi:  	 Volumetric ice content (m−3 m−3)
θw:  	 Volumetric water content (m−3 m−3)
λBC:  	 Pore distribution index in the model of Brooks and Corey (–)
λdecay:  	First-order decay coefficient for solute transport (s−1)
λdisp:  	 Thermal dispersion tensor (W m−1 K−1)
λeff:  	 Effective thermal conductivity of subsurface (W m−1 K−1)
λm:  	 Thermal conductivity of porous medium or aquifer (W m−1 K−1)
λs:  	 Thermal conductivity of solid material (W m−1 K−1)
λw:  	 Thermal conductivity of water (W m−1 K−1)
λvert:  	 Thermal conductivity of the overburden (W m−1 K−1)
μ:  	 Dynamic viscosity (Pa s)
ρ:  	 Dimensionless radius (m)
ρa:  	 Density of air (kg m−3)
ρi:  	 Density of ice (kg m−3)
ρs:  	 Density of the solid phase of the aquifer (kg m−3)
ρrel:  	 Relative density (–)
ρw:  	 Density of water (kg m−3)
τ:  	 Period (s)
φ:  	 Flow potential (m2 s−1)
φr:  	 Angular coordinate (polar angle) (–)
ϕ:  	� Porosity of aquifer, volumetric fraction of pores in aquifer (m−3 m−3 

or –)
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xxii  Symbols

χ:  	 Scaled pumping rate (–)
ψ:  	 Stream function (m2 s−1)
ω:  	 Angular frequency (s−1)

∇:  	 Gradient operator, applied to scalar quantity f: ∇ = ∂
∂

∂
∂

∂
∂







f
f
x

f
y

f
z

, ,

∇∙:  	 Divergence operator, e.g., applied to vector v: ∇ ⋅ = ∂
∂

+
∂
∂

+ ∂
∂

v
v
x

v

y
v
z

x y z
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