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Chapter 4

Numerical solutions

The principal motivation for the development and use of numerical models 
for heat transport in subsurface environments was simulation of geother-
mal systems and heat storage in aquifers. In general, the development of 
numerical techniques was, to a large degree, anticipated by the develop-
ment of models to simulate solute transport, starting in the 1970s. The 
review presented below concentrates on solutions of the advective and con-
ductive heat transport problem in porous media, including both the satu-
rated and unsaturated zones. Purely diffusive heat transport, a subject on 
which a vast number of contributions and models exist, is not considered 
here, since its numerical solution is formally identical to the solution of the 
diffusion equation (including the groundwater flow equation as a diffusion 
equation for pressure). Sometimes the solutions for pure heat conduction 
can be obtained from solutions for advection–dispersion–diffusion prob-
lems as special cases by setting the flow velocity equal to zero. The heat 
transport problem can be approximately solved in a linearized form, where 
temperature is influenced by flow, but flow is not influenced by tempera-
ture and density and hydraulic conductivity are assumed constant. This 
one-way coupling of flow and heat transport is the general assumption of 
authors. Alternatively, a fully two-way coupled solution is feasible where an 
iteration of the nonlinear system becomes necessary.

Mercer et al. (1982) presented a review on current simulation techniques 
for thermal energy storage in aquifers. Mercer et al. (1975) developed a 
transient two-dimensional model for the simulation of areal (horizontal) 
water flow and heat transport in a saturated aquifer, using the Galerkin 
finite element technique. Water viscosity and water density were taken as 
temperature dependent. They used the model to evaluate the hot-water 
geothermal system Wairakei (New Zealand), without taking into account 
phase-change processes. Their results were in general correspondence with 
the field data. Werner and Kley (1977) developed a three-dimensional 
finite difference model using cylindrical coordinates for the investigation of 
heat storage in aquifers. Radial flow velocity was assumed and dispersion 
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effects were taken into account. They were able to approximately simulate 
a hydrothermal field experiment near Krefeld (Germany).

The Lawrence Berkeley Laboratory (Lippmann et al. 1977) developed 
the code CCC, which stands for conduction, convection, and consolida-
tion, to simulate the coupled heat and momentum transport in one-, two-, 
and three-dimensional heterogeneous, anisotropic, nonisothermal porous 
media. Tsang et al. (1981) used this code to simulate the Auburn University 
field experiments (United States). They modeled two cycles of seasonal 
aquifer thermal energy storage (ATES). Simulated production temperatures 
and energy recovery factors agreed well with the field data.

Doughty et al. (1982) presented a dimensionless parameter approach 
to predict the thermal behavior of an ATES system. The analysis was 
restricted to radial flow in a horizontal aquifer confined by impermeable 
layers neglecting buoyancy effects. The heat transport equation was numer-
ically integrated using an explicit finite difference approach.

Sauty et al. (1982) presented a theoretical study on the thermal behavior 
of a hot water storage system in an aquifer using a single well. They devel-
oped an axially symmetrical model, solved it applying a finite difference 
scheme, and checked it against analytical solutions. Buoyancy effects were 
neglected. The model was then used to evaluate the well temperature dur-
ing production periods for symmetrical cycles (production volume and flow 
rate equal to injection volume and flow rate). They used both a fully implicit 
conductive scheme and an upstream explicit advective scheme. From the 
results, they deduced type curves for sets of dimensionless parameters.

Wiberg (1983) analyzed transient heat storage in an aquifer using the finite 
element method. His basic theory included nonlinear thermal physical proper-
ties and boundary conditions. Numerical simulations are shown for a purely 
conductive case with heat storage and a one-dimensional conductive–advective 
heat transport problem with a nonlinear decay term. Xue et al. (1990) used 
a three-dimensional alternating-direction implicit scheme to solve the heat 
transport equation. The flow was assumed as radial and heat transport 
included heat dispersion. The model was successfully used to investigate 
aquifer thermal heat storage in groundwater in China.

Merheb (1984) formulated a horizontal two-layer groundwater flow 
model and a corresponding heat transport model with heat exchange 
between layers and soil surface using a finite difference technique. The flow 
and the heat transport models were implemented in an uncoupled, sequen-
tial manner. He applied the model for the Strasbourg region (France).

Molson et al. (1992) formulated a three-dimensional finite element model 
for simulating coupled density-dependent groundwater flow and heat trans-
port in aquifers. The heat transport solution is based on a finite element 
time integration, which generates a symmetrical coefficient matrix. The 
thermal transport model was successfully checked against the results of the 
Borden (Canada) thermal injection field experiment. Dwyer and Eckstein 
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(1987) formulated a two-dimensional, horizontal, Galerkin finite element 
model for a feasibility study of ATES coupled with a heat pump. The flow 
and the heat transport models were applied in an uncoupled, sequential 
manner. In heat transport, advection and mechanical dispersion were taken 
into account.

Sun and Carrington (1995) developed a so-called implicit correction 
scheme for advection-dominated heat transfer in porous media with strong 
temperature gradient. The scheme allows relatively coarse grid size for the 
numerical discretization. Chevalier and Banton (1999) used the random 
walk method to study heat transfer problems in porous media with a radial 
flow field. Buoyancy effects were disregarded and none of the physical prop-
erties were dependent on the temperature. They checked the model against 
analytical and numerical solutions. Kohl and Hopkirk (1995) presented 
the simulation code FRACTure for forced water flow in fractured rocks. 
Hydrodynamics were coupled to rock mechanics but not to heat transport. 
They applied the code to hot dry rock sites. Signorelli et al. (2007) used this 
code for a numerical evaluation of thermal response tests. Hecht-Méndez et 
al. (2010) used MT3DMS (Zheng and Wang 1999) to simulate heat trans-
port in closed geothermal systems, assuming that buoyancy effects and 
temperature dependency of water viscosity are negligible. They compared 
their results with those of analytical solutions and numerical solutions 
using SEAWAT (Langevin et al. 2008) and found good agreement.

Diersch and Kolditz (1998) analyzed double-diffusion and buoyancy 
driven free-convection processes using the code FEFLOW (Diersch 1996).

Chiasson et al. (2000) numerically investigated the effects of groundwa-
ter flow on closed-loop ground-source heat pump systems and postulated 
that heat advection can significantly enhance heat transfer from and to 
borehole heat exchangers (BHEs). Similar conclusions were drawn by Fan 
et al. (2007). An initial assessment of the importance of advection can be 
obtained by an examination of the thermal Peclet number (Chiasson et al. 
2000).

Ferguson (2007) examined the effect of heterogeneities on heat transport 
by stochastic modeling, including dispersion effects using geostatistics of 
aquifers. His results indicate that there is considerable uncertainty in the 
distribution of heat associated with the injection of warm water into an 
aquifer. Advective–conductive heat transport models were created using 
METRA, which is a submodule of the code MULTIFLOW (Painter and 
Seth 2003). METRA is an integrated finite difference code capable of simu-
lating variable-density fluid flow and heat flow. Hidalgo et al. (2009) per-
formed a Monte Carlo analysis of steady-state advective–conductive heat 
transfer in heterogeneous aquifers using a finite element code.

Graf and Therrien (2007) formulated a model for coupled fluid flow, 
heat, and single-species reactive mass transport with variable fluid density 
and viscosity in fractured porous media. The effects were incorporated in 
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the code HydroGeoSphere. Brookfield et al. (2009) performed a numerical 
study on thermal transport modeling in a fully integrated surface–subsur-
face framework using this code.

Engeler et al. (2011) investigated heat transport in an aquifer with strong 
river–aquifer interaction. They used the code SPRING (delta-h 2012), which 
uses three-dimensional finite elements and allows temperature dependence 
of the flow parameters. They showed that better agreement with measured 
temperature data is obtained if the temperature dependence of the leak-
age coefficient (via the temperature dependence of viscosity) is taken into 
account in the modeling.

Several authors have also investigated heat transport in unsaturated 
porous media. Sophocleous (1979) formulated an implicit vertical finite dif-
ference model for the analysis of coupled nonlinear water and heat trans-
port under saturated and unsaturated conditions. He used and extended 
the Philip and de Vries (1957) formulation of coupled nonisothermal flow 
of water, vapor, and heat (Parlange et al. 1998). Yeh and Luxmore (1983) 
presented a multidimensional model for moisture and heat transport in 
unsaturated porous media using the so-called integrated compartment 
method, which is an extension of the integrated finite difference method. 
Again, the Philip and de Vries (1957) nonisothermal equations were used for 
simultaneous moisture and heat transport. Sidiropoulos and Tzimopoulos 
(1983) performed a sensitivity analysis of coupled water and heat transfer 
in porous media. For their case, they found that phase-change effects could 
be neglected. Birkholzer and Tsang (2000) used the code TOUGH2 (Wu 
et al. 1996) for the modeling of the coupled thermohydraulic processes in 
a large-scale underground heater test in partially saturated fractured tuff.

Al-Khoury (2012), Al-Khoury and Bonnier (2006), and Al-Khoury et 
al. (2005, 2010) presented computationally efficient finite element tools 
for the analysis of three-dimensional steady-state and transient heat flow 
in geothermal systems. They assumed that temperature has no influence 
on groundwater flow. They formulated one-dimensional heat pipe finite 
elements, which are capable of simulating pseudo-three-dimensional heat 
flow in a vertical BHE consisting of pipe-in, pipe-out, and grout material. 
Three-dimensional finite elements for saturated aquifers were formulated, 
which can be in contact with heat pipe finite elements. Their method was 
extended by Bauer et al. (2011) and Diersch et al. (2011a,b) and incorpo-
rated in the software FEFLOW (DHI-WASY 2010).

Glück (2011) developed engineering software for the numerical simu-
lation of underground heat exchangers. Steady-state and transient axi-
ally symmetrical temperature fields due to heat conduction are calculated 
using the finite volume method. Thermal processes within the BHE with 
inflow and outflow tubes (single- and double-U-tube configuration) 
embedded in grouting material are restricted to quasi-steady-state condi-
tions and are evaluated using the concept of heat transfer coefficients. By 
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evaluating an effective radius of a single device, regular fields of BHEs are 
approximated.

Lazzari et al. (2010) investigated the long-term performance of BHE 
fields with negligible groundwater movement by finite elements using the 
software package COMSOL. Lee and Lam (2008) performed computer 
simulations for BHE systems using the finite difference approach. Outside 
the borehole, heat transport is restricted to heat conduction. Inside the 
borehole, flow in the tubes is incorporated. Fujimitsu et al. (2010) numeri-
cally evaluated the environmental impact caused by a ground-coupled heat 
pump system using the FEFLOW software. Park et al. (2012) investigated 
the heat transfer of helical BHEs experimentally, analytically, and numeri-
cally. Park et al. (2013) numerically modeled precast, high strength con-
crete energy piles. Jalaluddin and Miyara (2012) numerically investigated 
the performance of several types of vertical BHEs in continuous and dis-
continuous operation modes with the software FLUENT.

Laloui et al. (2006) formulated a coupled displacement, pore water pres-
sure, temperature finite element model for heat exchanger piles. The model 
was able to reproduce in situ experimental observations.

Deng et al. (2005) suggested and tested a simplified numerical model for 
the simulation of standing column well ground heat exchangers. Woods 
and Ortega (2011) numerically investigated the thermal response of a line of 
standing column wells and compared these results with analytical models.

Kim et al. (2010) numerically investigated the performance of ATES 
systems in confined aquifers (open systems). They formulated a three-
dimensional aquifer flow and heat transport model with finite elements, 
assuming constant water density and viscosity, using COMSOL. They con-
cluded that the thermal interference of an ATES system (affecting primarily 
the system performance) depends on the distance between the two bore-
holes, the hydraulic conductivity of the aquifer, and the production/injec-
tion rate. The thermal interaction of pumping and injecting well groups 
with absent regional groundwater flow was numerically investigated by 
Gao et al. (2013). They assumed that material properties do not depend on 
temperature.

4.1 � TWO-DIMENSIONAL HORIZONTAL 
NUMERICAL SOLUTIONS

Two-dimensional numerical solutions are mainly discussed here with 
respect to their application concerning open thermal systems, that is, sys-
tems with water abstraction and reinfiltration after temperature increase or 
decrease by ΔT. The vertically integrated, two-dimensional heat transport 
equation for shallow regional aquifers focuses on the saturated part, as 
recalled here:
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The variable T(x, t) is the mean temperature in a vertical profile at loca-
tion x and time t. Vertical heat flow from below (geothermal heat flux), 
Jvert,bot(x, t), and vertical advective and diffusive heat transport from soil 
surface to aquifer, Jvert,top(x, t), are taken into account through source/sink 
terms. While the former can be expressed and inserted directly, the latter can 
be treated in a different manner. In the application of the two-dimensional 
heat transport equation, it is often assumed that the coupling of flow and 
transport via density can be neglected.

One possibility consists of inserting the linear approximation for the 
vertical heat flux Jvert,top(x, t) into the heat transport equation:
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Equation 4.2 is expressed here as the transient balance equation. 
However, we have to keep in mind that the transient behavior is not fully 
considered, or only in a rudimentary way, for the linear flux terms from soil 
surface to groundwater. This disadvantage is avoided for long-term, steady-
state flow and heat transport according to
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Furthermore, if we adopt the considerations pointed out in Chapter 
2.1.3.1 to formulate the equation in terms of temperature differences ΔT(x) = 
T(x) – Tsurface(x) and to choose T0 = Tsurface assuming constant surface tem-
perature, Equation 4.3 reduces to
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The equation formally corresponds to the steady-state solute transport 
equation with first-order decay.
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A main contribution to the heat production term Pt is the heat flux from 
large warm basements of constructions. The vertical contribution can be 
approximately expressed according to Equation 2.125 by
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(4.5)

Therefore, the heat flux consists of a first-order part in Trel = Tgw – T0 and 
a constant heat flux. The latter represents a heat-loading rate.

Another interesting possibility consists of coupling the two-dimensional 
heat transport equation for the (saturated) regional aquifer with the 
one-dimensional vertical heat-flow between soil surface and aquifer. In 
water flow problems, this coupling has been realized in HYDRUS-1D-
MODFLOW (Seo et al. 2007). It can be achieved, in principle, by adding 
vertical columns on top of each finite difference cell or finite element. In 
practice, however, areas of identical parameters and conditions are defined 
within the solution domain D in order to reduce the computational effort.

In the case of confined aquifers, the vertical heat flux Jvert,top(x, t) at the 
top of the aquifer is described by the heat transport equation in solids, 
according to Equation 2.101, here without production term:
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Coupling of the two models requires the continuity of temperature and 
the continuity of the heat flux.

For unconfined aquifers, the vertical heat balance equation, that is,
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has to be coupled with the water flow equation, that is, the vertical Richards 
equation:
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Coupling of the models now requires the continuity of temperature and 
water, as well as heat fluxes at the interface between the two regions. With 
this procedure, the computational effort can be reduced considerably com-
pared to a three-dimensional saturated–unsaturated model. In principle, 
the coupling with vertical soil columns can also be undertaken in connec-
tion with a multilayer flow and heat transport model.

4.1.1 � Analogy with solute transport models

Obviously, one may utilize any existing solute transport code for heat 
transport as well, if one establishes the analogy between both models in 
a consistent way. The principle is shown using the example of Equation 
4.4. A comparison with the steady-state solute transport equation, 
that is,

	 ∇ ⋅ ∇ − ∇ ⋅ + − =( ) ( )D qh
c

cc c
P
m

c
1

0
φ φ

λ 	 (4.9)

yields the following correspondence between the parameter

Solute transport Heat transport
Solute concentration c ≥ 0 Temperature Trel ≥ 0
Hydrodynamic dispersion tensor Dh Thermal dispersion tensor Dh

Molecular diffusion coefficient Dmol Thermal diffusion coefficient Dt

Macrodispersivities αL, αT Macrodispersivities βL, βT

Inverse porosity 1/ϕc Thermal capacity ratio Cw/Cm

Source/sink term Pc/(ϕm) Thermal source/sink Pt/(Cm m)

Decay coefficient λc Thermal flux coefficient λvert/(Cmm(f + m/2))

Therefore, in order to simulate heat transport using a solute transport 
code, the parameters have to be defined as follows. In the solute transport 
code, equivalent porosity is

	 φc
m

w

= C
C

	 (4.10)

The equivalent solute mass production term is

	 P
P
Cc

t

m

= φ 	 (4.11)
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and the equivalent decay coefficient is

	 λ λ
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m

=
⋅ +
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C m f
m
2

	 (4.12)

Consequently, the heat injection rate Jt = QCwΔT translates into the anal-
ogous solute mass flux Jc = QΔc. Note that since solute concentrations have 
to be positive, with c ≥ 0, the relative temperature has to be positive as well, 
with Trel ≥ 0.

The assumption of constant mean surface temperature represents a simpli-
fication of the complex processes at the soil surface (see Chapter 1). In fact, it 
cannot be excluded that an increase or decrease in groundwater temperature 
could also affect the temperature at the soil surface. Such a situation could 
arise, for example, for aquifers with very small depth to groundwater.

We are not aware that codes exist that solve Equation 4.4 or its transient 
form. However, several codes exist that solve the solute transport equation 
with first-order decay, like MT3D (Zheng 1990), MT3DMS (Zheng and 
Wang 1999), HydroGeoSphere (Graf and Therrien 2007; Raymond et al. 
2011), FEFLOW (DHI-WASY 2010), SPRING (delta-h 2012), and others. 
They can be used as analogs in order to solve thermal processes in two-
dimensional aquifers. In any case, a simulation of thermal or solute trans-
port requires the simulation of the water flow field beforehand.

4.1.2 � Analysis of steady-state open 
system in rectangular aquifer

The procedure for simulating heat transport using a solute transport code is 
illustrated for the example of a simple rectangular confined aquifer of size 
2000 m × 1000 m, of thickness m = 12 m, and with hydraulic conductivity 
Kw = 0.002 m s−1 (Figure 4.1). No areal recharge occurs. Piezometric head is 
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Figure 4.1  �Illustrative example of two-dimensional aquifer: situation and hydraulic 
boundary conditions.
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specified at the western boundary with hw = 12 m. At the eastern boundary, 
the water inflow rate is specified with a total flow rate of Qinflow = 0.036 m3 
s−1. Without wells, this corresponds to a flow gradient of 0.0015. Impermeable 
boundaries are present at the northern and southern boundaries. Thermal use 
is planned for an open system with extraction well, heat pump, and infiltra-
tion well. The pumping rate is Qw = 1000 m3 day−1. Since thermal use occurs 
in the winter season only, Qw corresponds to a yearly average value. The 
distance between extraction and infiltration well is chosen in order to avoid 
hydraulic short-circuiting for the actual pumping rate in the winter season. 
The steady-state flow field is shown in Figure 4.2 with results from particle 
tracking indicating flow lines. The equivalent porosity value is ϕc = 0.571, 
using Cm = 2.4 × 106 W m−3 K−1. Markers on the particle tracks are shown in 
yearly intervals based on the velocity ut of the thermal front.

The longitudinal thermal macrodispersivity is chosen as βL = 10 m and the 
transversal macrodispersivity as βT = 1 m. The size of the finite difference 
cells is 10 m. Boundary conditions are prescribed temperature Trel = 0 at the 
eastern boundary, impermeable northern and southern boundaries, and the 
transmission boundary type (Chapter 2.1.2.5) for the western boundary. 
The latter is approximated by setting longitudinal dispersivity to zero along 
the outflow boundary. Water is pumped at the abstraction well. A heat 
pump lowers the temperature by 3 K. This is realized by setting a positive 
source concentration of cwell = 3.0. The equivalent decay coefficient is cal-
culated using Equation 4.12, with λvert = 2.0 W m−1 K−1 and f = 6 m, which 
yields λc = 5.787 × 10−9 s−1. The transport module was run for 20 years in 
order to approach steady-state thermal conditions. The thermal plume after 
20 years of infiltration of cold water is shown in Figure 4.3. Note that this 
type of steady-state (time-averaged) analysis does not take into account the 
dynamics caused by seasonally varying pumping and infiltration rates. The 
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Figure 4.2  �Illustrative example of two-dimensional aquifer: steady-state flow field with step 
in piezometric head Δhw = 0.1 m. Particle tracks starting at infiltration well. 
Particle markers are introduced with increment Δt = 1 year (with respect to 
thermal velocity).
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latter would cause more lateral spreading of the thermal plume during the 
cold season and, therefore, also in the long run. Furthermore, it is important 
to realize that macrodispersion effects are usually overestimated close to the 
source, that is, the infiltration well. This has to do with the scale-effect of 
macrodispersivity as described in Chapter 2.1.2.3.

The example was calculated using standard MODFLOW-96 (USGS 
2012) and MT3DMS (Zheng and Wang 1999), which are both incorpo-
rated in the code PMWIN (Chiang and Kinzelbach 2005). Transport was 
simulated using an upstream finite difference scheme with discretization 
Δx = Δy = 10 m and a time step corresponding to a Courant number of 
0.75 (see Equation 4.32). The grid Peclet number (see Equation 4.30) was 2.

4.1.2.1 � Scaled solution for open system 
in rectangular aquifer

For the simple rectangular layout of the illustrative example, the procedure 
can be extended by scaling. By introducing a length scale L, any length can 
be scaled such as x′ = x/L or ′ =h h Lw w / . The steady-state scaled form of the 
two-dimensional flow equation 2.38 is

	 ′∇ ′ + =2 0h
NL

K mw
w

	 (4.13)

where ∇′2 is the Laplace operator, in scaled form. We may choose the length 
scale as L = Q/(mq0) using the pumping and infiltration rate Q and the 
specific inflow rate q0. Note that in this case, L is the recharge width of the 
flow toward the well.

Using the specified inflow rate q0 to scale the water fluxes, and introduc-
ing a temperature scale Θ, the scaled steady-state heat transport equation 
without Pt and Jvert,bot is

Trel = –0.1 K

Figure 4.3  �Illustrative example of two-dimensional aquifer: calculated thermal plume 
due to infiltration of cold water with ΔT = 3 K, after 20 years. Temperature 
increment is 0.1 K.
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	 β λL
t rel rel

vert rel

/L
T T

T Q
f m

′∇ ⋅ ′∇ ′ − ′∇ ⋅ ′ ′ + ′
+

( ) ( )
(

D q
22

02
0
2)m q Cw

= 	 (4.14)

assuming that macrodispersion is dominant compared to thermal diffu-
sion. The temperature scale may be chosen as Θ = ΔT. The decay term can 
be written as ′ ′λvert relT  with the dimensionless decay coefficient ′λvert:

	 ′ =
+

λ λ
vert

vert

/
Q

f m m q Cw( )2 2
0
2 	 (4.15)

A time scale τ can be obtained by setting τ = L/ut = LCm/(Cwq0).
The scaled temperature field is evaluated numerically and analyzed for 

the scaled temperature profile along the streamline through the infiltration 
well. For ′ =λvert 0 01. , 0.1, and 1, the dimensionless longitudinal dispersivity 

′ = =β βL L /L 0 02.  (which represents a small value), and the dispersivity ratio 
′ ′ =β βT L/ 0 1. , the scaled temperature profile is shown in Figure 4.4. For βL = 0.2 

(representing a medium value) and again ′ ′ =β βT L/ 0 1. , it is shown in Figure 
4.5. Obviously, there is quite some impact of dispersion on the shape of the 
plume. We can state that the shape is mainly governed by decay. Again, 
one has to be aware that dispersion effects are overestimated close to the 
infiltration well.

The numerical scaling analysis was again performed using standard 
MODFLOW-96 (USGS 2012) and MT3DMS (Zheng and Wang 1999), which 
are both incorporated in the code PMWIN (Chiang and Kinzelbach 2005). 
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Figure 4.4  �Scaled steady-state temperature profile downstream of the infiltration well in 
simple two-dimensional aquifer for dimensionless decay coefficients ′ =λvert 0 01. , 
0.1, 1 and ′ =βL 0 2. , ′ =βT 0 02. .
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Numerical solutions  175

Transport was simulated using an upstream finite difference scheme with 
discretization Δx′ = Δy′ = 0.02 and a time step corresponding to a Courant 
number of 0.75 (see Equation 4.32). Results are shown for the dimension-
less time t′ = 10.

4.2 � MULTIDIMENSIONAL NUMERICAL SOLUTIONS

Solution techniques are briefly discussed with respect to the solution of the 
heat transport equation 2.92 including heat advection:

	
∂
∂

= ∇ ⋅ ∇ − ∇ ⋅ +T
t

T
C
C

T
P

C
[ ] ( )D qt

w

m

t

m

	 (4.16)

Frequently used numerical solution methods can be classified as follows:

•	 Finite difference method
•	 Finite element method
•	 Finite volume method
•	 Method of characteristics
•	 Random walk method

Note that in each group, various submethods and techniques have been 
formulated. In the following, we concentrate on basic ideas of the methods.
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Figure 4.5  �Scaled steady-state temperature profile downstream of the infiltration well in 
simple two-dimensional aquifer for dimensionless decay coefficients ′ =λvert 0 01. , 
0.1, 1 and ′ =βL 0 2. , ′ =βT 0 02. .
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176  Thermal use of shallow groundwater﻿

4.2.1 � Principles of the finite difference 
method for heat transport

For the presentation of the principles, we prefer to start from the energy 
balance equation:

	 C
T
t

C T C T Pm m w t,disp w t
∂
∂

= ∇ ⋅ + ∇  − ∇ ⋅ +( ) ( )λ D q 	 (4.17)

The basic procedure of the finite difference method can be stated as 
follows: The solution domain D is discretized into prismatic cells. In 
the case of one- and two-dimensional problems, the shape reduces to 
linear and rectangular cells. Numbering of the cells is chosen according 
to three-dimensional matrices with layer, row, and column indices i, j, 
k. The cell size does not need to be constant. However, neighboring cells 
should still have similar size (change less than a factor of 2) for numeri-
cal reasons.

For each cell, the mean temperature Tijk(t) is either unknown (and to 
be calculated) or known (prescribed temperature). This temperature cor-
responds to the average value within the cells. The temperature Tijk(t) is 
assigned to the cell center.

For each cell (i, j, k), the physical heat balance is expressed over all sur-
faces of the cell using unknown temperatures Tijk(t + Δt) within the cells, 
given known temperatures in each cell, where Δt is the time step. The advec-
tive, diffusive, and dispersive heat fluxes are expressed by linear approxi-
mations, using the cell center temperatures from the neighboring cells. The 
rate of change of the energy within the cell is expressed using the time step 
Δt and the temperature difference Tijk(t + Δt) − Tijk(t).

Boundary conditions (like prescribed temperature or prescribed heat 
flux) are directly considered in the corresponding balance equations for the 
cells. The resulting equation system is linear in the unknown temperatures 
at time (t + Δt). After obtaining the solution, the new temperatures Tijk(t + 
Δt) in the cells are the initial conditions for a new time step.

The advective heat flux in x-direction into the cell (i, j, k) (Figure 4.6) can 
be expressed as follows:

	 J t q t T tx i j k adv
x i j k i j k

, , , ,
, , , , ,

( *) ( *) ( *)=
− −1

2
1
2

Cw ∆∆ ∆

∆ ∆

y z

q t C T t y z
x i j k i j k

−
+ +, , , , ,

( *) ( *)1
2

1
2

w

	

(4.18)
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Numerical solutions  177

The time t*, at which the fluxes are determined, has to be specified. 
The index i – 1/2 and i + 1/2, respectively, denote the values at the inter-
faces between the cells. This formulation presumes therefore that the cen-
tral value between adjacent cells is taken (central scheme). A (first-order) 
upwind scheme gives more weight to the upstream cell. This can increase 
stability of advective transport simulation, but may increase numerical dif-
fusion (see Pe-criterion below). If these cell indices are in (i, or i–1) and out 
(i or i–1), respectively, depending on the water flow direction, the heat flux 
can be written as

	 J t q t C T t yx i j k
x i j k

j k, , , ,
, , ,

, ,( *) ( *) ( *)adv w in=
−1

2

∆ ∆∆

∆ ∆

z

q t C T t y z
x i j k

j k−
+, , ,

, ,( *) ( *)1
2

w out

	

(4.19)

The conductive heat flux into the cell is expressed as

	 J t
T t T

x i j k

x i j k
i j k i j

, , , ,

, , ,
, , ,

( *)
( *)

diff =
⋅ −

− −λ 1
2

1 ,,

, , ,
, , , ,

( *)

( *)

k

x i j k
i j k i j k

t

x
y z

T t T

( )

−
⋅ −

− +

∆
∆ ∆

λ 1
2

1 (( *)t

x
y z

( )
∆

∆ ∆

	

(4.20)

x

y

i – 1,j,k i,j,k i + 1,j,k

i – 1,j + 1,k i,j + 1,k i + 1,j + 1,k

Figure 4.6  Finite difference grid with cell i,j,k.
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178  Thermal use of shallow groundwater﻿

In a corresponding manner, the dispersive flux in x-direction caused by a 
temperature gradient in x-direction is

	 J t
D T t T

x xx

xx i j k
i j k i j k

, ,

, , ,
, , , ,

( *)
( *)

disp =
⋅ −

− −1
2

1 (( *)

( *) (
, , ,

, , , ,

t

x
y z

D T t T
xx i j k

i j k i j k

( )

−
⋅ −

− +

∆
∆ ∆

1
2

1 tt

x
y z

*)( )
∆

∆ ∆

	

(4.21)

The dispersive flux in x-direction caused by a temperature gradient in 
y-direction, using interpolation of the gradient to the center of the exchang-
ing interface, is
	

J t
C D T t T

x xy

xx i j k
i j k i

, ,

, , ,
, ,

( *)
( *)

disp

w

=
⋅ −

− − −1
2

1 1 −− + − ++ −( )1 1 1 1

4

, , , , , ,( *) ( *) ( *)j k i j k i j kt T t T t

y
y

∆
∆ ∆zz

D T t T t

x
y z

xx i j k
i j k i j k

−
⋅ −( )

− +
, , ,

, , , ,( *) ( *)1
2

1

∆
∆ ∆

		

(4.22)

In a similar manner, all dispersive fluxes into the cell can be expressed. 
In order to express the dispersive fluxes in a symmetric way, a total of 26 
neighboring cells are needed in three dimensions.

Finally, the heat storage in the cell (i, j, k) is

	

C T t t T t x y z

t

J t

i j k i j k

i

m

adv

⋅ + −( )

= +

, , , ,

,

( ) ( )

( *)

∆ ∆ ∆ ∆

∆

JJ t J ti i ij

j x j zi x

, , _

, ,,

( *) ( *)diff disp+












==
∑

yy z

i j kP t
,

, , , ( *)∑ + t 	 (4.23)

Still, the time t*, at which the fluxes are determined, remains to be 
specified.

If all fluxes are evaluated at the old time level, that is, t* = t, one obtains 
an explicit scheme. This formulation is attractive since all fluxes can be 
evaluated directly without the need to solve an equation system. The only 
unknown is the temperature Tijk(t + Δt) appearing in the storage term, 
which can be computed in an explicit manner. However, the time step 
needs to be small enough in order to guarantee stability. It is required that 
the diffusive and dispersive thermal fluxes into any cell are smaller than the 
rate of change of energy within the cell:
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	 2 ⋅ + ≤( )λm w t,disp,L
mC D

T
s

C T s
t∆
∆

∆
	 (4.24)

This leads to the von Neumann criterion for the time step Δt of explicit 
schemes, which states

	 ∆
∆ ∆

t
C s

C D
s
Dw t

≤
⋅ +

=m

m t,disp,L

2 2

2 2( )λ
	 (4.25)

where Δs is the spatial discretization (Δx, or Δy, or Δz).
Using t* = t + Δt yields a fully implicit scheme, while for a Crank–

Nicolson scheme, T(t*) = 0.5∙(T(t + Δt) + T(t)) (time-centered) is applied 
(which also leads to implicit equations). Very often in available codes, the 
difference scheme is an input parameter and has to be selected: upwind or 
central in space, and explicit, implicit, or centered in time. For the implicit 
and the time-centered schemes, a linear equation system is obtained, of 
the form

	 A T b i nij j i

j

n

= =
=

∑ ; ,....,
1

1 	 (4.26)

where Aij is a term of the coefficient matrix, Tj is a component of an 
unknown vector of the temperature in the cells, bi is a constant term, and 
n is the number of cells. The resulting matrix [A] is sparse, since only the 
neighboring cells are involved in the balance equations. In contrast to the 
flow equations, in general, matrix [A] is not symmetric. The reason lies in 
the advective terms. Adapted numerical techniques, like the biconjugate 
gradient solver, have to be used.

Still accuracy criteria with respect to the choice of Δs and Δt have to be 
observed by the modeler in order to avoid excessive numerical diffusion 
(also called numerical dispersion) and numerical oscillations.

In order to reduce numerical diffusion, which means that the discretiza-
tion is able to adequately represent sharp thermal fronts without smearing, 
it is required that the advective heat flux is smaller than the dispersive and 
diffusive heat fluxes everywhere within the solution domain. For extreme 
cases, this requirement can be stated heuristically as

	 C q
T

C D
T
sw m w t,disp,L2

≤ +( )λ
∆

	 (4.27)
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180  Thermal use of shallow groundwater﻿

This leads to the requirement for the spatial discretization Δs:

	 ∆
t disp L

s
C

D

q
D
q

m

w t≤
⋅ +




 =

2
2

λ
, ,

	 (4.28)

For dominant macrodispersion, the criterion reduces to

	 Δs ≤ 2βL	 (4.29)

An equivalent formulation is that the thermal grid Peclet number satisfies 
the following:

	 Pe
t

= ≤q s
D
∆

2 	 (4.30)

In order to reduce numerical oscillations of the solution, which mani-
fest themselves as overshooting and undershooting, it is required that the 
advective heat flux into any cell is smaller than the rate of change of energy 
within the cell. For extreme cases, this requirement can be stated heuristi-
cally as

	 C qT
C T s

tw
m≤ ∆
∆

	 (4.31)

This leads to the requirement for the time step:

	 ∆
∆

t
C s
C q

≤ m

w
	 (4.32)

An equivalent formulation is that the thermal grid Courant number Co 
satisfies the Courant–Friedrichs–Lewy stability condition:

	 Co w

m

= ≤C q t
C s

∆
∆

1	 (4.33)

Compared to solute transport, the criterion is relaxed by the thermal 
retardation factor.

Still lateral numerical diffusion has to be controlled. From experience 
with solute plume simulations, it is desirable to resolve the thermal plume 
laterally by at least 10 cells.

D
ow

nl
oa

de
d 

by
 [

E
T

H
 B

IB
L

IO
T

H
E

K
 (

Z
ur

ic
h)

] 
at

 0
8:

21
 1

8 
O

ct
ob

er
 2

01
6 



Numerical solutions  181

Finally, it is recommended to check whether the numerical results are 
grid convergent. This means that the results using a finer grid are practi-
cally invariant compared to the original grid. An application of the finite 
difference method is given, for example, in Birkholzer and Tsang (2000).

4.2.2 � Principles of the finite element 
method for heat transport

In the finite element method, discretization uses the so-called finite ele-
ments (e.g., prismatic elements; Figure 4.7). Various classes of finite ele-
ments are available. Each element contains a number of nodal points, 
where the approximate solution is sought. The simplest two-dimensional 
and three-dimensional finite elements are triangular (3 nodal points) and 
tetrahedral (4 nodal points) elements with linear interpolation functions. 
Due to their flexible shape, finite element grids can much better adapt to 
irregular boundaries of the domain D and can also be better refined locally 
in regions where better resolution is needed, for example, close to sources 
and sinks. Within the solution domain, a trial solution is defined as follows:

	 ˆ ( , ) ( ) ( )T t T t wi i

i

n

x x=
=

∑
1

	 (4.34)

The functions wi(x) are weighting functions, which are determined from 
the interpolation functions of the finite element, and n is the number of 
nodal points. In fact, wi(x) vanishes outside the neighborhood of a nodal 
point (element patch containing all elements connected to the nodal point). 

Figure 4.7  Prismatic finite element with nodal points.
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182  Thermal use of shallow groundwater﻿

The parameters Ti(t) are the unknown nodal values. The trial solution 
approximates the temperature distribution within the domain. Inserting 
the trial solution into the rearranged heat transport equation:

	 L T T
C
C

T
P

C
T
t

tˆ ˆ ˆ
ˆ

( , )( ) = ∇ ⋅ ∇  − ∇ ⋅( ) + − ∂
∂

=D q xt
w

m

t

m

ε 	 (4.35)

yields a residual ε(x, t). According to Galerkin, it is required that the 
weighted residual using wi(x) as a weighting function vanishes in the neigh-
borhood of all nodal points i with unknown variable T:

	 ε( , ) ( ) ; ,...x xt w D i ni

D

d = =∫ 0 1 	 (4.36)

Integration is, in fact, restricted to the element patch of each nodal point. 
Therefore, the condition states that the weighted residual vanishes in the 
neighborhood of each nodal point. To avoid the appearance of distribu-
tions, one integration step of the conduction-thermal dispersion term is 
carried over to the weighting function using Greene’s theorem. Integration 
(analytical if possible or numerical using Gauss points) yields a set of ordi-
nary differential equations as follows:

	 F t
T

t
A t T b iij

j

n
j

ij j i

j

n

( *) ( *) ; ,.
= =

∑ ∑



 + = =

1 1

1
d

d
....,n 	 (4.37)

where Aij and Fij are matrix elements and bi is a constant term. Still it has to 
be decided for which time t* the matrices are evaluated. For a fully implicit 
scheme t* = t + Δt, and for a Crank–Nicolson scheme T(t*) = 0.5∙(T(t + Δt) + 
T(t)). Since the matrix [F] is not a diagonal matrix, an explicit scheme does 
not provide a computational advantage, unless [F] is diagonalized by lump-
ing all terms of a row in the diagonal. The time derivative is often dis-
cretized in finite differences with:

	
d

d

T

t

T t t T t

t
j j j�

( ) ( )+ −∆

∆
	 (4.38)

leading to a linear equation system for the unknown nodal values Tj(t + 
Δt) of the temperature. The resulting matrix [A] is again sparse, since only 
the neighboring nodal points are involved in the integration. Again, in gen-
eral, the matrix [A] is not symmetric due to the advective terms. Adapted 
numerical techniques, like the biconjugate gradient solver, have to be used. 
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Numerical solutions  183

An alternative consists of using an explicit scheme for the advective term 
and an implicit scheme for the diffusive–dispersive term, which leads to a 
symmetric matrix [A] (e.g., Leismann and Frind 1989).

Finite element techniques exhibit similar numerical stability problems 
as the finite difference methods. Again, the grid Peclet number (Equation 
4.30) and the Courant number (Equation 4.33) criteria have to be observed. 
In order to avoid lateral numerical diffusion, finite element grids can be 
aligned along water flow lines leading to the principal direction technique 
(Frind and Germain 1986). This avoids lateral numerical diffusion. An 
application of the finite element method is given, for example, in Molson 
et al. (1992).

4.2.3 � Principles of the finite volume 
method for heat transport

In the finite volume method, the solution domain is divided into small (con-
vex) finite volumes. Nodal points are used to interpolate the field variable. 
Usually a single node is used for each finite volume. Surface heat fluxes are 
expressed either by Gauss’ divergence theorem or directly by approximat-
ing the fluxes. The sum of all inflowing heat fluxes is equal to the rate of 
change of energy within the finite volume according to heat conservation. 
Boundary fluxes (Neumann type boundary conditions) can be directly 
introduced into the balance equation. For grids using rectangular blocks 
as finite volumes, the approach is identical to the finite difference approach 
as described in Section 4.2.1. However, the finite volume method is more 
general and allows unstructured grids. A model formulation using the finite 
volume method can be found in Russell et al. (2003). Applications of the 
finite volume method are given in Clauser (2003) and Rühaak et al. (2008).

4.2.4 � Principles of the method of 
characteristics for heat transport

In the method of characteristics used for transport problems in ground
water, the transport step is split into two half steps (operator splitting), one 
purely advective and the other diffusive and dispersive. In a moving control 
volume, moving with the thermal front velocity ut, the change of tempera-
ture can be expressed as follows:

	

d
d
T
t

T
t

T
x

x
t

T
y

y
t

T
z

z
t

T
t

T
x

u

= ∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

+ ∂
∂

∂
∂

= ∂
∂

+ ∂
∂ tt, t, tx y z

T
y

u
T
z

u+ ∂
∂

+ ∂
∂ , 	

(4.39)
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184  Thermal use of shallow groundwater﻿

The resulting tracks x(t), y(t), and z(t) of the particles are called the charac-
teristics. The diffusive and dispersive half time step is treated with the con-
ventional finite difference method, whereas the advection half time step is 
performed using particle tracking based on the velocity field. A large number 
of particles are initially introduced in the solution domain. Each particle carries 
a temperature, which can change over time. The principal steps are as follows:

•	 Given temperature Tp(t) of particles and Tij(t) of cells.
•	 All particles are moved advectively. New intermediate cell tempera-

tures T t tij
*( )+ ∆  are calculated by averaging the particle temperatures 

in the cells.
•	 Purely diffusive and dispersive temperature changes are calculated on 

the finite difference grid using T t tij
*( )+ ∆ , yielding new cell tempera-

tures Tij(t + Δt).
•	 New particle temperature values Tp(t + Δt) are calculated by adding 

increments.
•	 Start a new time step.

It is important that an optimal interpolation of the velocity within the cells 
is obtained. Frequently used interpolation schemes follow Prickett et al. (1981) 
and Pollock (1988). Modified (e.g., Liu and Dane 1996) and hybrid (forward 
and backward) schemes of the method of characteristics do exist. Numerical 
oscillations of the solution occur due to the particle-based nature of the method. 
Increasing the number of particles in the system can reduce these oscillations.

An application is presented, for example, in Hecht-Méndez et al. (2010).

4.2.5 � Principles of the random walk 
method for heat transport

In the random walk method used for transport problems in groundwater, the 
transport step is again split into two half steps, one purely advective and the 
other diffusive and dispersive as in the method of characteristics. Again, 
the advective time step is performed by particle tracking, based on the velocity 
field. In contrast to the method of characteristics, the particles carry a fixed 
energy in the random walk method. A large ensemble of particle paths yields, in 
the limit, the solution of the transport equation. From the analytical solution of 
the transport problem for uniform flow velocity in the direction of x, the new 
particle position after a time step Δt, starting at the location x(t = 0) = x0, is

	 x t t x t u t Z D txp p t t,L+( )= ( ) + +∆ ∆ ∆, 2 	 (4.40)

where Z is a normally distributed random number with zero average and 
standard deviation σZ = 1. The y- and z-components are obtained in a simi-
lar manner using transversal coefficients. The method yields a distribution 

D
ow

nl
oa

de
d 

by
 [

E
T

H
 B

IB
L

IO
T

H
E

K
 (

Z
ur

ic
h)

] 
at

 0
8:

21
 1

8 
O

ct
ob

er
 2

01
6 



Numerical solutions  185

of particles of equal energy. The cell temperature is obtained by counting 
the particles within a cell and dividing the total energy by the total heat 
capacity of the aquifer volume in the cell. Therefore, enough particles have 
to be added to the system. Since Equation 4.40 is based on a uniform veloc-
ity field, which is not the general case, correction terms have to be added 
(referred to as Fokker–Planck terms). The new particle position is for two-
dimensional heat transport:
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(4.41)

where ut is the absolute value of the thermal velocity, and Z′ as well as Z″ are 
normally distributed random numbers (zero mean and unit standard devia-
tion). The correction term prevents, for example, particles from accumulating 
at stagnation points (Kinzelbach 1987). It is again important that an optimal 
interpolation of the velocity within the cells is obtained. Frequently used inter-
polation schemes are after Prickett et al. (1981) and after Pollock (1988). For 
continuous injection of heat, particles have to be added continuously. A three-
dimensional formulation for solute transport by random walk can be found in 
Kinzelbach and Uffink (1991) and Lichtner et al. (2002). A two-dimensional 
application in heat transport is presented in Chevalier and Banton (1999).

4.3 � STRATEGY FOR COUPLED FLOW 
AND HEAT TRANSPORT

Usually, coupled flow and heat transport equations are linearized using a 
Picard iteration scheme (point iteration). In a first step, the flow equation 
is solved. Based on the head values, the Darcy velocity field is evaluated in 
a second step. In a third step, the heat transport equation is solved, and in 
a fourth step, the temperature-dependent parameters like water density are 
updated. All four steps are iterated to a specified convergence tolerance. 
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Various codes are organized in this manner (see Ackerer et al. 2004; Molson 
and Frind 2012). Molson et al. (1992) handle nonlinearities in the coupled 
flow and heat transport equations by centering the nonlinear terms in time 
during the iteration. In order to speed up the iteration process, Ackerer et 
al. (2004) suggest that the heat transport equation is evaluated first, and 
then an update of the temperature-dependent parameters is performed fol-
lowed by solving the flow equation with the evaluation of the velocity field. 
In their scheme, the heat transport equation is solved with velocities defined 
in the previous iteration. Because the flow equation is more dependent on 
the temperature than the heat transport equation on the heads (tempera-
ture variations in time create a sink/source term in the flow equation), this 
algorithm should reduce the number of iterations needed within one time 
step. However, the solution of highly nonlinear, density-dependent flow 
problems involving high temperature contrasts may require other solution 
approaches (see, e.g., Herbert et al. 1988).

Diersch and Kolditz (1998) use first- or second-order predictor–corrector 
schemes for solving the coupled equations.

4.4 � SOME AVAILABLE CODES FOR THERMAL 
TRANSPORT MODELING IN GROUNDWATER

As already stated, a large number of codes on solute and contaminant trans-
port are available, such as MT3D (Zheng 1990) or MT3DMS (Zheng and 
Wang 1999), which, in principle, can also be used for thermal transport 
studies in groundwater by analogy. Among the codes that directly allow 
simulation of thermal processes, we mention a few. A list of some selected 
groundwater flow and heat transport codes are presented in Anderson (2005).

FEFLOW (DHI-WASY 2010) is a variably saturated, three-dimensional 
finite element code for the simulation of variable-density water flow, solute, 
and heat transport, including coupled transport. Thermal applications are 
presented, for example, in Maréchal et al. (1999) and Nam et al. (2008). 
The software includes analytical and numerical modules for the finite ele-
ment formulation of BHEs in modeling geothermal heating systems.

HST3D (Kipp 1997) is a three-dimensional finite difference code. It sim-
ulates groundwater flow and associated heat and solute transport in satu-
rated aquifers. It can handle variable water density and viscosity. Among 
other applications, the code is offered for heat storage in aquifers. An appli-
cation using the code is given in Bravo et al. (2002).

HEATFLOW-SMOKER (Molson and Frind 2012) is a three-dimensional 
finite element code for solving complex density-dependent groundwater flow 
and thermal energy transport problems. The model can be used to solve 
one-, two-, or three-dimensional heat transport problems within a variety of 
hydrogeological systems, including discretely fractured porous media.
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HydroGeoSphere (Graf and Therrien 2007; Raymond et al. 2011) is a 
three-dimensional numerical model for fully integrated density-dependent 
subsurface and surface flow, heat transport, and solute transport. It was 
used by Raymond et al. (2011) for a numerical analysis of thermal response 
tests. A review was presented by Brunner and Simmons (2012).

SEAWAT (Langevin et al. 2007) is a coupled version of MODFLOW 
and MT3DMS models designed to simulate three-dimensional, variable-
density, groundwater flow and solute transport in saturated porous media. 
The effects of fluid viscosity variation on groundwater flow are included. 
Although not explicitly designed to model heat transport, temperature can 
be simulated as one of the species by entering appropriate transport coeffi-
cients. Version 4 is based on MODFLOW-2000 and MT3DMS. Applications 
are presented, for example, in Vandenbohede and Lebbe (2011).

SHEMAT (Clauser 2003) is a three-dimensional finite difference code. 
It mainly focuses on numerical simulation of reactive flow in geothermal 
aquifers. It solves transient coupled problems of groundwater flow, heat 
transport, species transport, and chemical water–rock interaction in fluid-
saturated porous media. Applications are presented, for example, in Clauser 
(2003) and Pannike et al. (2006).

SPRING (delta-h 2012) is a variably saturated three-dimensional finite 
element code for the simulation of coupled water flow and solute or heat 
transport in saturated and unsaturated porous media. An application is 
shown, for example, in Engeler et al. (2011).

SUTRA (Voss and Provost 2010) is a variably saturated three-dimensional 
finite element code for density-dependent saturated or unsaturated ground-
water flow, and solute or heat transport. An application is presented, for 
example, in Ronan et al. (1998).

TOUGH2 (Pruess et al. 2012) is a variably saturated three-dimensional inte-
gral finite difference code for nonisothermal flows of multicomponent, multi-
phase fluids and coupled heat transfer in one-, two-, and three-dimensional 
porous and fractured media. Temperature and pressure dependence of ther-
mophysical properties are taken into account. Main applications for which 
TOUGH2 was designed are in geothermal reservoir engineering, nuclear 
waste disposal, environmental assessment and remediation, and unsatu-
rated and saturated zone hydrology. A thermal application is presented, for 
example, in Birkholzer and Zhang (2000).

VS2DI (Hsieh et al. 2000) is a two-dimensional finite difference code 
for simulating fluid flow and solute or heat transport in variably satu-
rated porous media in one or two dimensions using Cartesian or radial 
coordinate systems. An application is given, for example, in Constantz 
(1998).

Table 4.1 gives an overview on various codes that are suited for heat 
transport simulations of shallow geothermal systems considering ground-
water flow.
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Table 4.1  �Numerical codes suitable for heat transport simulations of shallow geothermal systems considering groundwater flow (not meant 
to be exhaustive or complete)

Code name
Numerical 
method Processes Coupling Availability Comments Reference

AST/TWOW FD H, T H → T Commercial 3D, calculates near-field heat 
transport around BHEs

Schmidt and Hellström 
(2005)

BASIN2 FD H, T H ↔ T, 
M, CH

Free code 2D, simulates sedimentary basin 
development; cross-sectional view

Bethke et al. (2007)

COMSOL FE H, T, C H ↔ T Commercial 3D, multiphysics (more processes 
can be coupled)

Holzbecher and Kohfahl 
(2008)

FEFLOW FE H, T, C H ↔ T, 
M, C

Commercial 2D, 3D DHI-WASY (2010)

FRACHEM FE H, T, C H ↔ T, 
M, C

Scientific 3D, used for hot dry rock 
modeling

Bächler (2003)

FRACture FE H, T H ↔ T, M Scientific 3D, developed for hot dry rock 
modeling

Kohl and Hopkirk 
(1995)

ROCKFLOW/GeoSys FE H, T, C H ↔ T, C Scientific 3D, fracture systems can be 
included.  Allows for multiphase 

flow

Kolditz et al. (2001)

HEATFLOW-SMOKER FE H, T H ↔ T Free code 1D, 2D, 3D Molson and Frind 
(2012)

HST2D/3D FD H, T, C H ↔ T, 
M, R

Free code 2D, 3D Kipp (1997)D
ow
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HydroTherm FE H, T H ↔ T Free code 2D, 3D, two-phase model; can 
simulate 0 to 1200°C

Kipp et al. (2008)

HydroGeoSphere FV H, T, C H ↔ T, C Scientific 3D Raymond et al. (2011)
HYDRUS-2D/3D FE H, T, C H → T Commercial Unsaturated zone, plant water 

uptake is considered
Radcliffe and Šimůnek 

(2010)
SEAWAT FD H, T, C H ↔ T, C Free code 3D Langevin et al. (2008)
SHEMAT FD H, T, C H ↔ T, C Commercial 3D Clauser (2003)
SUTRA FE H, T, C H ↔ T, C Free code 2D, 3D Voss and Provost (2010)
SPRING FE H, T, C H ↔ T, C Commercial 3D delta-h (2012)
THETA FD H, T, C H ↔ T, C Scientific 3D Kangas (1996)
TOUGH2 FD H, T, C H ↔ T, 

M, R
Commercial 1D, 2D, and 3D, one of the most 

widely used codes in geothermal 
energy technologies; allows for 

multiphase flow

Pruess et al. (2012)

TRADIKON 3D FD H, T H → T Free code 3D, specially designed for BHE 
assessments

Brehm (1989)

VS2DI FD H, T H → T Free code 2D Hsieh et al. (2000)

Source:	 After Hecht-Méndez, J. et al. Ground Water 48(5), 741–756, 2010.

Notes:	C, contaminant (solute); H, hydraulic; H → T, fluid flow is independent of T; H ↔ T, fluid flow depends on T; T, temperature; M, mechanical deformation (pore 
deformation); R, chemical reaction.
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