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Chapter 3

Analytical solutions

In general, flow and heat transport problems can only be solved analyti-
cally for special cases. Such cases are characterized as follows:

•	 Constant coefficients of the flow and heat transport equation and of 
the boundary conditions and therefore homogeneous porous media 
are assumed. In the case of heat transport, this usually means con-
stant thermal retardation or thermal velocity and constant thermal 
diffusion and dispersion coefficients.

•	 The flow domain is sufficiently simple, for example, infinite, or radi-
ally symmetric.

•	 The initial condition is sufficiently simple, for example, constant, or 
zero.

•	 The boundary conditions are sufficiently simple, for example, con-
stant, or zero.

If these conditions are met to some degree, analytical solutions are, in gen-
eral, preferable over numerical ones. Important applications of analytical solu-
tions are analytical approximations to complex situations, the determination 
of parameters using experimental data, or the test of numerical solution meth-
ods, like the finite difference, the finite volume, or the finite element methods.

For heat transport, in general, analytical solutions are restricted to 
closed systems. Nevertheless, analytical approximations are available for 
both open- and closed-loop systems. There exists a long tradition in using 
analytical solutions for groundwater flow, and mass diffusion, solute trans-
port, and heat transport problems in porous media and in fluids. In the fol-
lowing literature overview, we list a few representatives in the field of heat 
transport in solid materials, saturated porous media, and groundwater.

Carslaw and Jaeger (1946, 1959) presented a large number of analyti-
cal solutions to the problem of heat conduction in solid materials. Many 
of these solutions are used in the field of both water flow (exploiting the 
analogy to piezometric head diffusion) and heat transport in groundwater.
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Ingersoll et al. (1948, 1954) presented a comprehensive theory and ana-
lytical solutions to the heat conduction problem with engineering and geo-
logical applications. Among other subjects, they treated the mathematical 
problem of heat sources for heat pumps.

Domenico and Palciauskas (1973) offer analytical solutions to the steady-
state flow and heat transport problem in homogeneous rectangular vertical 
regions using concepts from Toth (1963). The upper boundary condition is 
a prescribed head condition that represents the water table. The lateral and 
lower boundaries are impermeable.

Gringarten and Sauty (1975) investigated the transient temperature evo-
lution of a pumped aquifer during reinjection of water at a temperature 
different from that of the native water. A horizontal aquifer of constant 
thickness with impermeable bottom and top layers is considered. Flow is 
assumed to be at steady state, thus neglecting the short transient period 
during reinjection. Flow direction is arbitrary. Transient heat transport 
is solved semianalytically for the curved stream channel between the two 
wells, using the stream function concept and taking into account heat flow 
from cap rock and bedrock. Results are given in dimensionless form.

Mercer et al. (1982) reviewed a series of analytical solutions for aquifer 
thermal energy storage.

Uffink (1983) investigated the heat exchange between aquifer and adja-
cent aquitard layers. He developed simplified analytical solutions for 
advective–diffusive heat transport in an aquifer close to injection wells for 
transient and periodic conditions. Heat transport in the top and bottom lay-
ers is assumed to be vertical and conductive. For a thin aquifer, he adopted 
Carslaw and Jaeger’s (1959) solution for one-dimensional, purely advective 
heat transport and exchange with adjacent semi-infinite layers. The further 
assumption for vertical temperature profiles in thin aquifers is referred to 
as Lauwerier’s (1955) assumption. As already shown by Gringarten and 
Sauty (1975), the approach is also valid for two-dimensional heat trans-
port if heat transport perpendicular to streamlines is neglected. Due to 
the heat exchange, considerable damping of temperature changes may take 
place. Uffink (1983) further shows that for periodic boundary conditions, 
the thickness of the aquifer (typically thicker than a few meters) has to be 
taken into account for the vertical heat exchange.

Güven et al. (1983) derived analytical expressions for the temperature 
distribution of a simplified aquifer thermal energy storage concept, taking 
heat exchange at the soil surface into account. The system is restricted to 
heat conduction processes in a cylindrical region.

A unified mathematical analysis and analytical solutions of heat and 
mass diffusion problems were presented by Mikhailov and Özişik (1984) 
and Häfner et al. (1992).

Bundschuh (1993) formulated analytical models for the simulation of 
periodic temperature variations in shallow aquifer.
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Lu and Ge (1996) developed an analytical solution for the vertical tem-
perature distribution in a semiconfining layer of an aquifer, in order to 
investigate the effect of horizontal water and heat flow. Their solution is an 
extension of the one-dimensional approach of Bredehoeft and Papadopulos 
(1965).

Incropera et al. (2007) describe analytical solutions for a series of techni-
cal problems, like heat exchanger systems.

Yang and Yeh (2008) formulated an analytical model for the radial heat 
transfer during the injection of hot water into a confined aquifer. Heat 
fluxes in the underlying and overlying rock are restricted to vertical con-
ductive flux. Effects of heat dispersion are neglected.

Woods and Ortega (2011) formulated an analytical model to investigate 
the thermal response of a line of standing column wells and compared sim-
ulation results with results from numerical simulations.

Furthermore, for borehole heat exchanger (BHE) systems, various ana-
lytical models have been developed in the past. Based on analytical solu-
tions of Eskilson and Claesson (1988) for BHEs and analytical expressions 
of Hellström (1991) for the thermal resistance of BHEs (Section 2.1.2.6), 
the software EED (Earth Energy Designer, current Version 3.16, BLOCON 
2008) for the design of BHEs was developed. The software allows either 
the calculation of mean fluid temperature in BHEs, which are embedded in 
a medium with given properties (thermal conductivity, thermal capacity, 
mean ground surface temperature, geothermal heat flux) for given ther-
mal load and BHE layout (diameter and length of borehole, type of BHE 
configuration), or the calculation of the required borehole length for given 
minimum and maximum temperatures of the fluid within the BHE. Further 
alternative software tools are GLHEPRO (current version 4.0, 2007) or 
EWS (Huber 2008, current version 4.0). Based on the cylinder source 
theory, Nagano et al. (2006) developed a design and performance predic-
tion tool for ground-source heat pump systems. Lamarche and Beauchamp 
(2007) presented an analytical solution for the short-term analysis of BHEs 
with concentric cylindrical tubes. Based on numerical simulations, they 
demonstrated that the solution is also a good approximation for the U-tube 
configuration.

In the following, an overview of analytical solutions, relevant for the 
assessment of the thermal use of shallow groundwater systems, is given. We 
start with closed systems without local water withdrawal and reinjection, 
which, contrary to open systems, do not modify the original flow field. 
Thermal sources of the analytical solutions can be represented by a point 
source, an infinite line source (ILS), or a finite line source (FLS). These are 
shown schematically in Figure 3.1a through c. The temperature T is the 
sum of the ambient temperature without thermal use T0 and a decrease 
(or increase) ΔT. The thermal velocity and the thermal diffusion/dispersion 
coefficient are indicated by an index t.
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Figure 3.1  �Thermal sources. (a) Point source in infinite aquifer with flow field q; (b) line 
source in aquifer layer bound by insulating layers with flow field q; (c) FLS in 
infinite aquifer with flow field q (schematic).
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3.1 � CLOSED SYSTEMS

3.1.1 � Instantaneous point source—
three- dimensional conduction

The three-dimensional differential equation for heat conduction with con-
stant coefficients, and without internal sources or sinks, is

	
∂
∂

= ∇ = ⋅ ∂
∂

+ ∂
∂

+ ∂
∂







T
t

D T D
T

x
T
y

T
zt

2
2

2

2

2

2

2t 	 (3.1)

where Dt is the thermal diffusion coefficient with Dt = λm/Cm. The initial 
condition is T(x, y, z, t = 0) = T0. A quantity of energy ΔE (J) injected 
instantaneously at the point (x0, y0, z0) within an infinite three-dimensional 
aquitard produces a temperature distribution T(x, y, z, t) given by an instan-
taneous point source solution (Carslaw and Jaeger 1959):
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	 (3.2)

In each coordinate direction x, y, and z, a bell-shaped temperature dis-
tribution is obtained. Accordingly, a negative injection corresponds to heat 
extraction. The point source may correspond to a small portion of a heat 
exchanger. Note that the initial temperature at the source location is infi-
nite. This is due to the idealized condition of finite energy in a point.

3.1.2 � Moving point source—three-dimensional 
conduction and advection

The three-dimensional differential equation for heat conduction and advec-
tion with constant coefficients, without internal sources or sinks, and for 
uniform groundwater flow in x-direction is

	
∂
∂

= ∂
∂

+ ∂
∂

+ ∂
∂

− ∂
∂

T
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D
T

x
D

T
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D
T
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2

2

2

2

2

2 	 (3.3)

The initial condition is T(x, y, z, t = 0) = T0. The coefficient Dt,L (m2 s−1) 
includes both thermal diffusion and dispersion. The moving point source 
with source strength J = dE/dt (W) at a point located at (x0, y0, z0) within 
an infinite three-dimensional aquifer corresponds to the problem of a point 
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source moving in the x-direction in an aquifer with zero flow (Carslaw and 
Jaeger 1959) with the temperature
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(3.4)

The evaluation of the integral can be performed numerically. The tem-
perature at the source location is infinite. The continuous point source may 
correspond to a small portion of a heat exchanger with continuous heat 
injection/extraction. In this case, the temperature has to be taken at the 
borehole wall, thus representing an approximation to the real situation.

3.1.3 � ILS—two-dimensional conduction

Assuming the BHE as a vertical line source at location (x0, y0) with infinite 
length along the vertical (z0) direction, we integrate Equation 3.2 along 
an infinite line, –∞ < z0 < ∞, in order to get the instantaneous line source 
(Carslaw and Jaeger 1959):
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E H
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∫ z z
D t
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(3.5)

where ΔE/H (J m−1) is the heat energy per unit length of the borehole of 
length H (m), which is extended to the whole infinite length of the borehole 
of the model. Solving the previous integral results in

	 T x y t T
E H

t
x x y y
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( , , ) exp
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0
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0
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4 4
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	 (3.6)

Integrating Equation 3.6 from 0 < t′ < t, we get the continuous line source

	 T x y t T
q r

D t t
t

t
( , , ) exp

( ) (
= + −
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where qtb = J/H = (dE/dt)/H (W m−1) is the heat flow rate per unit length of 
the borehole and r2 = (x − x0)2 + (y − y0)2 is the radial coordinate. Introducing 
the dimensionless variable u = r2/4Dt(t − t′) and the term dt′/(t − t′) = du/u 
results in

	 T x y t T
q

u
u
u

r D t

( , , ) exp( )

( )

= + −
∞

∫0

4
4

2

tb

m
/

d

t

πλ 	 (3.8)

Moreover, making use of the definition of the exponential integral

	 − − = −
∞

∫Ei
d

( )x e
u
u

u

x

	 (3.9)

the solution for the ILS can be expressed as follows:

	 T x y t T
q r

D t
( , , ) = − −






0

2

4 4
tb

m t

Ei
πλ

	 (3.10)

In hydrological literature, the function −Ei(−x) is also known as the well 
function W(x). Equation 3.10 is, in particular, applicable for the evaluation 
of short-term geothermal field experiments such as thermal response tests, 
which usually last from 12 to 60 h (Signorelli et al. 2007). Introducing 
the dimensionless temperature rise Θ = 4πλmΔT/(J/H), where ΔT = T − T0, 
the dimensionless radial coordinate R = r/L, where L is the length scale of 
interest, and the Fourier number Fo, which can be interpreted as dimen-
sionless time, with

	 Fo = Dtt/L2	 (3.11)

we can express Equation 3.10 in dimensionless form as follows:

	 ΘILS Ei
Fo

= − −










R2

4
	 (3.12)

The instantaneous and the continuous ILS models can be directly applied 
for a thin BHE sufficiently far away from the upper and lower ends of 
the BHE. Moreover, it can be applied for a finite soil layer of thickness H 
(length of the BHE), which is limited by a thermally insulating top and bot-
tom layer (Figure 3.1b).
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Based on the infinite line-source model and the thermal load of a BHE 
system, Michopoulos and Kyriakis (2009) developed and evaluated a model 
to predict the temperature at the exit of a vertical ground heat exchanger.

The coded function (MATLAB script) of the ILS model (Equation 3.10) 
is listed as T_ILS.m. It can be found at http://www.crcpress.com/product/
isbn/9781466560192. A program to visualize the two-dimensional tem-
perature field response for a single borehole with a continuous heat flow 
rate is available as closedsys.m. As an example, Figure 3.2 shows the radial 
temperature propagation after 90 days of operating a BHE with specific 
heat extraction qtb = J/H of 50 W m−1.

Solutions to the ILS model for the time-dependent heat input function of 
a group of BHEs can be obtained by applying the superposition principle 
over all BHEs and over a series of time increments. Figure 3.3 shows the 
seasonal heat input defined by a cosine function as

	 JBHE(x = 0, t) = Jamplcos(α − ωt)	 (3.13)

for α = 0 (phase shift) and the heat input amplitude Jampl = 62.8 W m−1. The 
symbol ω (s−1) is the angular frequency, where ω = 2π/τ with the length of 
the period τ.
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Figure 3.2  �(See color insert.) Temperature field for a single BHE with constant 
energy extraction after 90 days. ILS model (qtb = J/H = 50 W m−1, T0 = 10°C, 
Dt = 9 × 10−7 m2 s−1).
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The temperature field of interacting boreholes is calculated by summing 
up the temperature response of individual BHEs:

	 ∆ ∆T Ti

i

N

=
=

∑
1

	 (3.14)

where N denotes the number of BHEs. A MATLAB program to visualize a 
two-dimensional temperature field response for multiple boreholes is listed as 
closedsys_mBHE.m. Figure 3.4a through d shows the seasonal heat input and 
temperature maps for the times 10.0, 10.25, 10.5, and 10.75 years after the 
operation began. The system has almost reached quasi-steady state. The geo-
metric arrangement and operation mode adjustment in low enthalpy geother-
mal fields for heating was studied by Beck et al. (2013) using similar models.

3.1.4 � Infinite cylindrical source—
two-dimensional conduction

For cases in which the radius of the BHE (r0) is important, the source is 
considered as a cylindrical surface and the heat flow rate is applied at r = 
r0. Ingersoll et al. (1954) presented the following equation:
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(3.15)

where R = r/r0 (L = r0) is the dimensionless cylindrical radius. The functions 
J0 and J1 are Bessel functions of the first kind and of orders zero and one, 
whereas Y0 and Y1 are Bessel functions of the second kind of orders zero 
and one. Equation 3.15 is difficult to evaluate. A simpler expression can be 
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Figure 3.3  �Seasonal cosine heat input function (example).
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Figure 3.4  �(See color insert.) Heat exchanger group 3 × 3 calculated with ILS model 
with seasonal cosine heat input. (a) Map after 10.0 years; (b) 10.25 years; 
(c) 10.5 years; and (d) 10.75 years.
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Figure 3.4  �(Continued) (See color insert.) Heat exchanger group 3 × 3 calculated 
with ILS model with seasonal cosine heat input. (a) Map after 10.0 years; 
(b) 10.25 years; (c) 10.5 years; and (d) 10.75 years.
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112  Thermal use of shallow groundwater

derived by expressing the line source model (Equation 3.10) in radial coor-
dinates (r, φr) for a line source at location r0 and ′ϕr:

	 T r t T
q r r rr

D
( , , )

cos( )ϕ
πλ

ϕ ϕ= − − + − − ′
0

2
0
2

0

4
2
4

tb
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r r
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



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	 (3.16)

where r and φr denote the radial and angular coordinates, respectively. 
Integrating Equation 3.16 around a circle of radius r0, the infinite cylindri-
cal source (ICS) can be expressed as follows (Man et al. 2010):
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The integral can be evaluated numerically. Introducing the dimensionless 
time Fo /t= D t r0

2 (L = r0), we can express the dimensionless temperature rise 
according to Equation 3.17 in dimensionless form:

	 ΘICS
r

rEi d= − − + − ′



 ′∫1 1 2

4

2

0
π

ϕ ϕ
π

R Rcos
Fo

	 (3.18)

Equations 3.17 and 3.18 were first introduced by Man et al. (2010) to 
simulate heat transfer by pile ground heat exchangers.

Figure 3.5 shows the difference of the ILS and ICS models, especially for 
short time simulations. The ICS model is more suitable for short time simu-
lations compared to the ILS. Figure 3.6 reveals that the effect of assuming 
the borehole as an ILS becomes irrelevant for Fo ≥ 8 (L = r0) when R = 1 (at 
the borehole wall) assuming ΘILS/ΘICS > 0.99 as a criterion. Eskilson (1987) 
states that the ILS model is valid for Fo > 5. In comparison, Ingersoll et 
al. (1954) were more strict and stated that the ILS model is only valid for 
Fo > 20. Philippe et al. (2009) investigated the validity range of analytical 
solutions to the ILS, FLS, and ICS models. Bernier et al. (2004) suggested a 
technique to aggregate heating and cooling loads when using the cylindri-
cal source models to perform annual hourly energy simulations of ground 
coupled heat pump systems.

The coded function (MATLAB script) of the ICS model (Equation 3.17) 
is available as T_ICS.m. As an example, a BHE with specific heat extrac-
tion qtb = J/H of 50 W m−1 and a radius of 0.1 m in an aquifer with a thermal 
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diffusion coefficient of 9.0 × 10−7 m2 s−1 results in a temperature change at 
the borehole wall of −1.6 K after 3 h (Fo = 1.0) when using the ILS model. 
In comparison, the ICS yields a temperature change of −1.9 K. Due to this 
discrepancy, the use of the more appropriate ICS is favorable for these spe-
cific conditions.
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Figure 3.5 � Dimensionless temperature as function of dimensionless time Fo (R = 1.0, 
L = r0).
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114  Thermal use of shallow groundwater

3.1.5 � FLS—three-dimensional conduction

In order to account for axial effects, the borehole must be considered to 
have finite length. Integrating Equation 3.2 between 0 ≤ t′ ≤ t, we get the 
continuous point source (Carslaw and Jaeger 1959):

	 T r t T
J

C D
r

D t t
( , )

( )
exp

( )
= +

⋅
′

⋅ − ′






′

0 3 2

2

8 4m t
/

t

d
π

tt
t t

t

( )− ′∫ 3 2

0

/ 	 (3.19)

where J = dE/dt (W) is the strength of the continuous point source and

	 ′ = − + − + − = + −r x x y y z z r z z( ) ( ) ( ) ( )0
2

0
2

0
2 2

0
2 	 (3.20)

is the radial coordinate. Applying the change of variables τ = (t − t′)−1/2 and 
dt′/(t − t′)−3/2 = 2dτ results in

	 T r t T
J

C D
r

D
t

( , )
( )

exp= + − ′






∞

∫0 3 2

2 2

1
4 4m t

/
t

/

d
π

τ τ 	 (3.21)

and finally in

	 T x y z t T
J

r
r

D t
( , , , ) erfc= +

′
′





0 4 4πλm t

	 (3.22)

where erfc(x) is the complementary error function:

	 erfc( ) exp( )x y y
x

= −
∞

∫2 2

π
d 	 (3.23)

When t approaches infinity, Equation 3.22 can be approximated by the 
steady-state point source solution:

	 T x y z T
J

r
( , , ) = +

′0 4πλm

	 (3.24)

The contributions of point sources of equal energy injection/extrac-
tion making up a line source can be added (Eskilson 1987; Lamarche and 
Beauchamp 2007; Marcotte et al. 2010; Zeng et al. 2002), and the constant 
surface temperature boundary condition can be satisfied by applying the 
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Analytical solutions  115

method of images (Figure 3.7). Applying this method (Eskilson 1987; Zeng 
et al. 2002) to Equation 3.22 yields the FLS model:

	 T x y z t T
q r D t

r
z

r D
( , , , )

erfc erfc
= +

′( )
′

−
′

0 04

4 4
tb

m

t d
πλ

tt d
t

r
z

H

H ( )
′











−
∫∫
0

0

0 	

(3.25)

where H is the borehole length.
For steady-state conditions, Equation 3.25 reduces to

	 T x y z T
q H z r H z

H z r H z
( , , ) ln

( )

( )
= + − + + −

+ + + +
0

2 2

2 24
tb

mπ λ
⋅⋅ + + +









2 22 2 2 2

2

z z r z r
r

	

(3.26)

Introducing the dimensionless time Fo = Dtt/H2 (L = H) and the dimen-
sionless coordinates R = r/H, Z = z/H, and Z′ = z0/H, we can express the 
transient FLS model (Equation 3.25) in dimensionless form:

	

ΘFLS d=
+ − ′ 

+ − ′
′

−

∫
erfc ( ) Fo

( )

erfc

R Z Z

R Z Z
Z

2 2

2 2
0

1
2

RR Z Z

R Z Z
Z

2 2

2 2
1

0
2+ − ′ 

+ − ′
′

−
∫

( ) Fo

( )
d

	

(3.27)
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Figure 3.7  �Representation of the FLS. (Modified after Zeng, H.Y. et al. Heat Transfer-
Asian Research 31 (7), 558–567, 2002.)
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116  Thermal use of shallow groundwater

and also the steady-state Equation 3.26:

	 ΘFLS_steady-state = − + + −

+ + + +
⋅ln

( )

( )

1 1

1 1

2 2

2 2

Z R Z

Z R Z

22 22 2 2 2

2

Z Z R Z R
R

+ + +











	 (3.28)

From Figure 3.8, it can be seen that axial effects become important for 
long time simulations. The shorter the borehole length, the higher the dis-
crepancy between the ILS and FLS models. Figure 3.9 shows that the axial 
effects are negligible for Fo < 0.052 (L = H) when R = 0.005 (H = 10 m, r = 
r0 = 0.05 m) assuming ΘFLS/ΘILS > 0.9 as a criterion. For R = 0.0005 (H = 
100 m, r = r0 = 0.05 m), axial effects are negligible for Fo < 0.065. Eskilson 
(1987) is more restrictive and states that the ILS model is valid for Fo < 
0.01.

Bandos et al. (2009) present a solution to the FLS model, which takes 
into account the prevailing geothermal gradient and arbitrary ground sur-
face temperatures. Marcotte et al. (2010) investigated the importance of 
axial effects by comparing solutions of the ILS and FLS models. Cui et al. 
(2006) formulated an inclined FLS analytical solution.

The coded functions (MATLAB scripts) of the FLS model for transient 
(Equation 3.25) and steady-state conditions (Equation 3.26) are listed as 
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Figure 3.8  �Dimensionless temperature response at the borehole wall over dimension-
less time for different borehole lengths H (m) (R = 0.005, L = H = 10 m, r = 
r0 = 0.05 m, z = 0.5 × H).
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Analytical solutions  117

T_FLS.m and T_FLSs.m, respectively. A program to visualize the tempera-
ture at the borehole wall over time for a single borehole with a continu-
ous heat flow rate is listed as closedsys_Tb.m. As an example, Figure 3.10 
shows the temperature response at the borehole wall for a BHE with spe-
cific heat extraction qtb = J/H of 50 W m−1 using the ILS and FLS models.
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Figure 3.9  �Ratio of the FLS and the ILS models over the dimensionless time Fo (R = 
0.005, L = H = 10 m, r = 0.05 m, z = 0.5 × H).
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Figure 3.10  �Temperature response at the borehole wall over time (H = 10 m, z = 0.5 × 
H, Dt = 9 × 10−7 m2 s−1).
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118  Thermal use of shallow groundwater

3.1.6 � Finite cylindrical source—
three- dimensional conduction

First, we express the continuous point source model (Equation 3.22) in 
radial coordinates as follows:

	 T r z t T
J r r rr

r
r r( , , , )

erfc cos( )
ϕ

πλ
ϕ ϕ

3 0

2
0
2

0

4

2
= +

+ − − ′

m

++ −( )
+ − − ′ + −

( )

cos( ) ( )

z z D t

r r rr z zr r

0
2

2
0
2

0 0
2

4

2

t

ϕ ϕ
	

(3.29)

Then we integrate Equation 3.29 around a circle of radius r0 in order to 
get the continuous ring source model:

	 T r z t T
J r r rr z zr

( , , )
erfc cos ( )

= +
+ − ′ + −

0
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2

0 0
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ϕ
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(3.30)

For steady-state conditions, Equation 3.30 reduces to

	 T r z T
J

r r rr z zr

r( , )
cos ( )

= +
+ − ′ + −

′0
2

0
2

0 0
2

0
4

1

2πλ π ϕ
ϕ

π

m
∫∫ 	 (3.31)

Integrating over the borehole length and adding the upper constant 
temperature boundary condition by applying the method of images to 
Equations 3.30 and 3.31 yields the finite cylindrical source (FCS) model:
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(3.32)

	 T r z T
q

r
z

r
zr r( , ) = +

′
′ ′ −

′
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−

0

0 0
4

1 1tb
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d d d d
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
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	 (3.33)
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Analytical solutions  119

where ′ = + − ′ + − ′r r r rr z zr
2

0
2

0
22 cos ( )ϕ . Similar equations have been pre-

sented by Man et al. (2010). Expressing Equations 3.32 and 3.33 in dimen-
sionless form yields

	 ΘFCS d d=
′ 

′
′ ′ −

′ 
′∫ erfc Fo erfc FoR

R
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R
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2 2

0
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ϕ
π

π

RR
Zrd d′ ′∫∫∫

−

ϕ
π

01

0

0

1

	 (3.34)

	 ΘFCS_steady-state d d d d=
′

′ ′ −
′

′ ′∫ ∫1 1

0 0
π

ϕ
π

ϕ
π π

R
z

R
zr r

−−
∫∫
1

0

0

1

	 (3.35)

where ′ = + − ′ + − ′R R R RR Z Zr
2

0
2

0
22 cos ( )ϕ  and R0 = r0/L.

The behavior with respect to the influence of the borehole radius in a 
conduction-dominated problem is similar to the one shown in Figures 3.5 
and 3.6.

The coded functions (MATLAB script) of the FCS model for transient 
(Equation 3.32) and steady-state (Equation 3.33) conditions are listed as 
T_FCS.m and T_FCSs.m, respectively.

3.1.7 � Moving ILS—two-dimensional 
conduction and advection

An ILS in an aquifer with uniform flow according to Figure 3.1b corre-
sponds to the moving ILS (MILS). Applying the moving source theory to 
Equation 3.7 yields the analytical solution for the response of a constant 
line source of infinite length along the vertical direction with a continuous 
heat flow rate qtb = J/H per unit length of the borehole, or the MILS model:

	 T x y t T
q x u t t y

D t
( , , ) exp

{( ( )}
(

= + − − ⋅ − ′ +
⋅0

2 2

4 4
tb
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t t

t

) ( )
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d
	 (3.36)

For the sake of simplicity, the source is located at x0 = y0 = 0. Applying 
the following change of variable ψ = r2/4Dt∙(t − t′), dt′/(t − t′) = dψ/ψ, and 
r x y= +2 2  yields

	 T x y t T
q u x

D
u r

( , , ) exp exp= +

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4 2 16
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∫ 	 (3.37)
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120  Thermal use of shallow groundwater

For steady state-conditions, Equation 3.37 becomes (Carslaw and Jaeger 
1959)

	 T x y T
q u x

D

u x y

D
( , ) exp K= +











+


0 0

2 2

2 2 2
tb

m

t

t

t

tπλ 







	 (3.38)

in which K0 is the modified Bessel function of the second kind of order 
zero. Equations 3.37 and 3.38 have previously been used by Sutton et al. 
(2003), Zubair and Chaudhry (1996), and Diao et al. (2004) to calculate 
the ground resistance, temperature distributions for time-dependent energy 
extraction/injection, and the effects of groundwater advection on ground-
source heat pump systems.

Introducing the thermal Peclet number Pe = utL/Dt, we can express the 
MILS model (Equation 3.37) in dimensionless form as follows:

	 ΘMILS

/

=








 − −









exp
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cos exp

Pe
2 16

2 2

2

R
R

r

R

ϕ ψ
ψ

44Fo

∞

∫ dψ
ψ 	 (3.39)

	 ΘMILS_steady-state r=













2

2 20exp
Pe

cos K
Pe

R Rϕ



 	 (3.40)

Recall that φr is the angular coordinate (polar angle) and R = r/L. If 
groundwater flow is present, temperature distribution in the x–y plane is 
not symmetrical with respect to the polar angle. Figure 3.11 shows the 
dimensionless temperature distribution using Equation 3.40.
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Figure 3.11  �Steady-state dimensionless isotherms considering background groundwater 
flow (q = 1.0 × 10−6 m s−1, Dt = 9 × 10−7 m2 s−1).
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Analytical solutions  121

The coded functions (MATLAB script) of the MILS model for transient 
(Equation 3.37) and steady-state (Equation 3.38) conditions are listed as 
T_MILS.m and T_MILSs.m, respectively. A program to visualize the two-
dimensional temperature field response for a single borehole with contin
uous heat flow rate in an aquifer with uniform horizontal groundwater 
flow is listed as closedsys.m. As an example, Figure 3.12 shows the two-
dimensional temperature response for steady-state conditions of a BHE 
with specific heat extraction qtb = J/H of 50 W m−1. The aquifer has an 
initial temperature T0 = 10°C, a thermal diffusion coefficient of 9 × 10−7 
m2 s−1, and a uniform groundwater flow velocity of 1.0 × 10−6 m s−1. An 
example of a two-dimensional temperature field of multiple BHEs in an 
aquifer with background groundwater flow is shown in Figure 3.13. The 
program is listed as closedsys_mBHE.m.
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Figure 3.13  �(See color insert.) Temperature field of multiple interacting BHEs with 
constant energy extraction after 90 days (qtb = J/H = 50 W m−1, T0 = 10°C, 
q = 1.0 × 10−6 m s−1, Dt = 9 × 10−7 m2 s−1).
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Figure 3.12  �(See color insert.) Temperature field for a single BHE with constant 
energy extraction after 90 days (qtb = J/H = 50 W m−1, T0 = 10°C, q = 1.0 × 
10−6 m s−1, Dt = 9 × 10−7 m2 s−1).
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122  Thermal use of shallow groundwater

In order to compute the mean temperature around a borehole in an aqui-
fer with uniform horizontal groundwater flow, the integral average of the 
temperature response of a circle of radius r0 must be estimated (Diao et al. 
2004).

Taking into account the following definition of the modified Bessel func-
tion of the first kind and of order zero

	 I d0

0

1
( ) exp( cos )u u= ′ ′∫π

ϕ ϕ
π

	 (3.41)

the mean temperature at the borehole wall (r = r0) for the MILS for transient 
(Equation 3.37) and steady-state conditions (Equation 3.38) is as follows:
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In dimensionless form, we get
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
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	 ΘMILS_steady-state =
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






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2
2 20 0 0 0I
Pe

K
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R R 	 (3.45)

Although a BHE consists of a buried pipe, which commonly is embed-
ded in grouting material, the approximation by a line source is commonly 
accepted as an approximation in heat transport models of ground-source 
systems (Diao et al. 2004; Eskilson 1987; Sutton et al. 2003).

The coded functions (MATLAB script) of the MILS model for com-
puting the mean temperature at the borehole wall (Equations 3.42 and 
3.43) are T_MILSc.m and T_MILScs.m, respectively. An example of the 
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Analytical solutions  123

temperature response at the borehole wall is shown in Figure 3.14 using 
Equations 3.37 and 3.42 with constant energy extraction. Note that in 
Figure 3.14, Equation 3.42 computes the average temperature around the 
borehole wall, whereas Equation 3.37 computes the temperature at x = r0 
and y = 0.

In order to consider thermal dispersion, we express the instantaneous 
line source equation (Equation 3.6) for anisotropic material (Carslaw and 
Jaeger 1959) and apply the moving source theory, which yields

	 T x y t T
E H

C D D t

x u t
D t

( , , ) exp
[ ]= + − −

0

2

4 4
∆ /

m t,L t,T

t

t,Lπ
−−




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




y
D t

2

4 t,T
	 (3.46)

where Dt,L and Dt,T are the longitudinal and transversal thermal diffusivity 
coefficients (Equation 2.93), respectively, which include thermal dispersion 
effects, given by

	 Dt,L = Dt + βLut	 (3.47)

	 Dt,T = Dt + βTut	 (3.48)
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Figure 3.14  �Temperature response at the borehole wall over time (qtb = J/H = 50 W m−1, 
q = 1.0 × 10−6 m s−1, Dt = 9 × 10−7 m2 s−1). MILS: moving ILS (x = r0); MILSc: 
MILS with mean temperature at the borehole wall (r = r0).
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124  Thermal use of shallow groundwater

Let us now consider a continuous line source, where a constant heat flow 
rate qtb = J/H is continuously injected/extracted. Integrating Equation 3.46 
over the time interval (0, t):

T x y t T
q

C D D

x u t t
D

( , , ) exp
[ ( )]= + − − ⋅ − ′

0

2

4 4
tb
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⋅ − ′
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t t

t 2
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(3.49)

and applying the change of variable yields
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∫ 	 (3.50)

Metzger et al. (2004) used this analytical solution to estimate thermal 
dispersion coefficients for a packed bed of glass spheres. Hecht-Méndez et 
al. (2013) applied superposition of Equation 3.50 to optimize multiple BHE 
operation in a BHE field

	 T x y T
J H

C D D

u x
D

u
( , ) exp K= +
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
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
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2 2 2
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








	 (3.51)

In Equations 3.49 and 3.50, thermal dispersivities are set to zero (βL = 
βT = 0) when thermal dispersion is ignored. This yields the analytical solu-
tions given by Equations 3.37 and 3.38.

The coded functions (MATLAB scripts) of the MILS model for tran-
sient (Equation 3.35) and steady-state (Equation 3.36) conditions, con-
sidering thermal dispersion, are listed as T_MILSd.m and T_MILSsd.m, 
respectively.

As an example, Figure 3.15 shows the two-dimensional temperature field 
response of a BHE with specific heat extraction of 50 W m−1 for differ-
ent values of thermal dispersivity. The length of a plume is defined via an 
isothermal contour ΔT, as the distance between the source and the inter-
section of this isothermal contour with the x-axis. Increase in dispersivity 
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Analytical solutions  125

yields shorter temperature plumes for the given ΔT. The relative sensitivity 
of the temperature change near a BHE to longitudinal dispersivity almost 
disappears for long-term simulation. In contrast, according to Equation 
3.51, sensitivity to transverse dispersivity grows with simulated time.

For steady-state conditions, an approximation can be made in order to 
calculate the length of the temperature plume by using an approximation 
of the modified Bessel function of the second kind of order zero, K0(u) 
(Carslaw and Jaeger 1959):

	 u u u
u

0 5
0 2

1
1

8
. exp( )K ( ) ≈ −







π
	 (3.52)

where u is the argument of the Bessel function. Substituting Equation 
3.52 into Equation 3.51 and solving for the temperature plume length (Lp) 
yields

	 L
J H

C D u T

C Dm
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m t,T t

t,L/=
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± −
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J H
t,T

/

∆ 2

2( )









 	 (3.53)

where ΔT is the value of the isothermal contour. Equation 3.53 has been 
previously used by Molina-Giraldo et al. (2011a) to evaluate the effect of 
thermal dispersion in temperature plumes from vertical ground-source heat 
pump systems. Ham et al. (2004) used it to estimate the effect of dispersion 
on solute transport.

4

2

0

–2

–4 0 5 10 15 20
x (m)

y (
m

)

βT  = 0 m βT = 0.05 m βT = 0.20 m

Figure 3.15  �Steady-state temperature field for a single BHE with constant energy extrac-
tion for different thermal dispersivities (ΔT = 1 K, qtb = J/H = 50 W m−1, q = 
1.0 × 10−6 m s−1, Dt = 9 × 10−7 m2 s−1). (Modified after Molina-Giraldo, N. 
et al. International Journal of Thermal Sciences 50 (7), 1223–1231, 2011.)
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126  Thermal use of shallow groundwater

The coded function (MATLAB script) of the MILS model to compute the 
length of the temperature plume at steady-state conditions (Equation 3.53) 
is available as T_PL.m.

Equation 3.53 can be employed to compute the length of a temperature 
plume (Lp) for a given isothermal contour (ΔT) under steady-state condi-
tions. This is an estimate, which is valid only for u ≫ 1. According to 
Abramowitz and Stegun (1964), the relative error of this approximation is 
around 0.01 when u > 3. Figure 3.16 shows an exemplary comparison of 
the full solution (Equation 3.50) with the approximation (Equation 3.53). 
The relative error for this specific example is about 8% for a ΔT = 2 K.

3.1.8 � Moving FLS—three-dimensional 
conduction and advection

The temperature response at a given time t due to an energy flux J extracted/
injected by a continuous point source after applying the moving source 
theory to Equation 3.2 (Carslaw and Jaeger 1959) is

T x y z t T
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C D
x u t t

( , , , )
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⋅
− − ⋅ − ′ +

0 3 2
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t t
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2 2

0

3 24
+

⋅ − ′
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







′
− ′∫

t
/
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( ) ( )

	

(3.54)
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Figure 3.16  �Plume length for steady-state conditions as a function of temperature change 
(q = 1 × 10−6 m s−1, Dt = 9 × 10−7 m2 s−1, βL = 1.0 m, βT = 0.1 m, qtb = J/H = 
−50 W m−1, y = 0 m). (Modified after Molina-Giraldo, N. et al. International 
Journal of Thermal Sciences 50 (7), 1223–1231, 2011.)
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Analytical solutions  127

For the sake of simplicity, the source is located at x0 = y0 = 0. Applying 
the change of variable, ψ = ′ ⋅ − ′r D t t2 t ( )  and d d/

t′ − ′ = ′t t t D r( )3 2 4 ψ, 
yields the moving point source equation for a continuous injection:
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(3.55)

where ′ = + + − = + −r x y z z r z z2 2
0

2 2
0

2( ) ( ) . For steady-state conditions, 
Equation 3.55 becomes
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Applying the following change of variable, ϕ = ψ2, to Equation 3.55 yields
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The integral of Equation 3.57 can be expressed as the generalized incom-
plete Gamma function (Chaudhry and Zubair 1994):
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From Equations 3.57 and 3.58, we have the following equation:
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	 (3.59)

In order to account for axial effects and constant ground surface temper-
ature conditions, the method of images (Carslaw and Jaeger 1959; Eskilson 
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128  Thermal use of shallow groundwater

1987) is applied to Equation 3.59, resulting in the moving FLS (MFLS) 
model:

T x y z t T
J H u x

D
u u

( , , , ) exp
( , ;= +









0

1 2

4 2
1 2/ /

m

t

tπλ
Γ )) ( , ; )

π π′
−

′











−
∫∫ r

z
u u

r
z

H

H

d
/

d0
1 2

0

0

0

1 2Γ
	

(3.60)

The generalized incomplete Gamma function can be approximated by 
the following function (Chaudhry and Zubair 1994):
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For steady-state conditions, applying the method of images to Equation 
3.56 yields
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Introducing the dimensionless variables R = r/H(L = H), Z = z/H, Z′ = 
z0/H, U1 = R′2/(4Fo), U2 = Pe2R′2/16, and R′2 = R2 + (Z − Z′)2, we can 
express Equations 3.60 and 3.62 in dimensionless forms as follows:
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and for steady-state conditions:
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Analytical solutions  129

The mean temperature at the borehole wall for the MFLS for transient 
and steady-state conditions is as follows:
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where ′ = + − ′ + − ′R R R RR Z Z2
0
2

0
22 cos ( )ϕr  and R r L0 0= / .

Figure 3.17 shows the difference between the MFLS and ILS models due 
to simulation time and borehole length. The longer the simulation time and 
the shorter the borehole length become, the larger the discrepancy is.

Molina-Giraldo et al. (2011b) concluded that the role of axial effects 
depends on the groundwater velocity and the length of the BHE. They 
stated that the MFLS can be applied to all groundwater flow conditions 
and borehole lengths. However, they also found that the FLS is still valid 
for Pe < 1.2 and the MILS for Pe > 10.

The coded functions (MATLAB scripts) of the MFLS model for tran-
sient (Equations 3.60 and 3.61) and steady-state (Equation 3.62) conditions 
are listed as T_MFLS.m and T_MFLSs.m, respectively. For computing 
the mean temperature at the borehole wall (Equations 3.65 and 3.66), the 
coded functions are T_MFLSc.m and T_MFLScs.m, respectively.

Figure 3.18 compares the relative temperature, ΔT, contours obtained by 
the MFLS and MILS models with groundwater advection (Molina-Giraldo 
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130  Thermal use of shallow groundwater

et al. 2011b). Temperature plumes simulated by the MFLS model are 
shorter (Figure 3.18a). The reason for this is an axial effect. It induces ver-
tical dissipation of heat and thus leads to lower temperature changes at any 
lateral distance from the BHE than the MILS. Consequently, by ignoring 
axial effects, longer boreholes are calculated for the same energy demand 
by the MILS compared to the MFLS (Marcotte et al. 2010). Figure 3.18b 
shows the axial extension of the temperature plume. It is revealed that the 
discrepancies between the MFLS and MILS models are most pronounced 
close to the endpoints of the borehole.

3.1.9 � Infinite plane source—
one- dimensional conduction

The instantaneous plane source of strength dE/dA (J m−2), within an infi-
nite porous medium is described by a one-dimensional heat conduction 
equation with constant coefficients, where x is the direction normal to the 
plane source, and A is the source area:

	
∂
∂

= ∂
∂

T
t

D
T

xt

2

2 	 (3.69)
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Figure 3.17  �Temperature response over dimensionless number Fo for different bore-
hole lengths (q = 1 × 10−7 m s−1, Dt = 9 × 10−7 m2 s−1, x = r0 = 0.05 m, y = 0 m, 
z = 0.5 × H). (Modified after Molina-Giraldo, N. et al. International Journal of 
Thermal Sciences 50 (12), 2506–2513, 2011.)
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Analytical solutions  131

The initial condition is T(x, t = 0) = T0. The temperature T(x,t) for a 
source at the location x0 is

	 T x t T
E A

C D t
x x

D t
( , )

( )
exp

( )= +
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− −



0 1 2

0
2

2 4
∆ /

m t
/

tπ 
	 (3.70)
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Figure 3.18  �Temperature response (K) for a single BHE with constant energy extraction 
(qtb = J/H = 20 W m−1, q = 1.0 × 10−7 m/s, H = 10 m). (a) Plan view (z = 0.5 × 
H for MFLS). (b) Vertical cross section along centerline (y = 0 m). (Modified 
after Molina-Giraldo, N. et al. International Journal of Thermal Sciences 50 (12), 
2506–2513, 2011.)
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132  Thermal use of shallow groundwater

3.1.10 � Moving infinite plane source—
one- dimensional conduction and advection

The continuous plane source of specific strength j (W m−2) within an infi-
nite porous medium consists of a one-dimensional heat conduction and 
advection problem with the differential equation

	
∂
∂

= ∂
∂

− ∂
∂

T
t

D
T

x
u

T
xxt t,

2

2 	 (3.71)

The initial condition is T(x, t = 0) = T0. The temperature T(x, t) for 
a source at the location x0 is—after Bear (1979)—in analogy to solute 
transport:
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where a and b are
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and using the steady-state temperature change ΔT:

	 ∆T
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	 (3.74)

The integral may be evaluated numerically. Alternatively, the solution for 
the continuous plane source can be transformed as follows:
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(3.75)

Note that the products exp(arg1) × erfc(arg2) may have to be evaluated 
for very large arguments arg1 by combining the series expansion of the two 
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Analytical solutions  133

related functions. The continuous plane source may correspond to a dense 
array of heat exchangers in the vertical plane of an aquifer with uniform 
flow conditions.

Dimensionless temperature profiles can be obtained by using the scaled 
variables x′, T′ and t′:

	 ′ = ⋅ − ′ = ′ = −
x

u x x
D

t
u t
D

T
T T

T
t

t,L

t
2

t,L

( )
; ;0 0

∆
	 (3.76)

An evaluation is shown in Figure 3.19. Note that close to the source at 
x′ = 0, thermal dispersion is overestimated compared to field observations. 
This is due to the fact that the combined effect of grain scale mechani-
cal dispersion and macrodispersion depends on the flow distance (Section 
2.1.2.3). Both mechanical and macrodispersion start from zero at the 
source. Therefore, they need some time and flow distance, respectively, 
until a constant dispersion coefficient is attained. Furthermore, for small 
times (t′ < 1), the temperature distribution is almost symmetrical due to the 
dominance of diffusion and dispersion. For large times after start of injec-
tion (t′ > 100), the heat propagation is strongly influenced by advection and 
can be approximated by

	 T x t T
T x t

t
T

T x u t
( , ) ≅ + ′ − ′

′






= + −
0 02 2 2

∆ ∆
erfc erfc t

22 D tt,L









 	 (3.77)

This solution corresponds to the development of an initially sharp tem-
perature front in an infinite porous medium with T(x < 0, t = 0) and T(x > 
0, t = 0) = T0 + ΔT.

MATLAB scripts of the infinite plane source model for transient conduc-
tive/dispersive–advective transport (Equation 3.75) and of the development 
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Figure 3.19  �Continuous plane source in one-dimensional aquifer. Dimensionless results 
with ′ = ′ = ′ =x x u D t t u D T T Ttt t,L t,L/ / /; ;2
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134  Thermal use of shallow groundwater

of an initially sharp temperature front (Equation 3.77) in a uniform 
flow field are listed as Continuous_injection.m and Thermal_front.m, 
respectively.

3.1.11 � Steady-state injection into an aquifer 
with thermally leaky top layer

The steady-state, one-dimensional heat transport with thermally leaky top 
layer (overburden or cap rock) in a shallow aquifer is described according 
to Equation 2.113:

	 D
T

x
u

T
x

j

mCt,L t,x
vert,top

m

∂
∂

− ∂
∂

+ =
2

2 0 	 (3.78)

where the thermal flux from the surface to the groundwater jvert,top, con-
sidering only heat conduction and assuming constant surface temperature 
Tsurface, is

	 j
T T

f mvert,top
vert surface

/
= ⋅ −

+
λ ( )

( )2
	 (3.79)

The temperature profile T(x) is the vertically averaged value within the 
thin aquifer. The temperature before the thermal injection is T0. The bot-
tom layer is assumed to behave like an insulator. The boundary condition 
is T(x→∞) = 0. The solution for x ≥ 0 (after Bear 1979) is in analogy to 
solute transport:

	 T x T
T u x x

D
( ) exp

( )
( )= + ⋅ − ⋅ −







surface
t

t,L

∆
χ

χ0

2
1 	 (3.80)

with

	 χ
λ

= +
⋅ +







1
4

2

1 2
D

C m f m u
t,L vert

m t
2

/

/( )
	 (3.81)

If the expression

	
4

2

D

C m f m u
t,L vert

m t
2/

λ
⋅ +( )

	 (3.82)
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Analytical solutions  135

within Equation 3.81 is small, which is often the case, then 1/χ ≅ 1, and, 
using the first term of a series expansion for χ, (1 − χ) is

	 1
2

2
−

⋅ +
χ

λ
�

D

C m f m u
t,L vert

m t
2/( )

	 (3.83)

Thus, the temperature profile is approximately

	

T x T T
x x

C m f m u
( ) exp

( )
( )

� surface
vert

m t/
+ −

⋅ +




∆ 0

2
λ


=

+ −
⋅ +







T

T
x x

C m f m q

surface

vert

w /
∆ exp

( )
( )

0

2
λ

	

(3.84)

In this case, the steady-state temperature profile is independent of the 
coefficient Dt,L. Therefore, it cannot be used to estimate Dt,L based on data 
along a flow line. Instead the profile is determined by the heat flow in the 
overburden between surface and aquifer. It can be employed to assess the 
mitigation effect of the overburden for thermal use.

As an example, consider the parameter values Dt,L = 3 m2 day−1, m = 10 m, 
f = 5 m, q = 1 m day−1, λvert = 0.0015 kJ m−1 K−1 s−1, Cw = 4200 kJ m−3 K−1, 
Cm = 3000 kJ m−3 K−1, and x0 = 0 m. Expression 3.82 is about 0.003, and 
the approximation 3.84 is well applicable. The temperature at x = 100 m 
is about T0 + ΔT × 0.97. For (T − T0)/ΔT = 0.5, which corresponds to an 
increase or decrease in the temperature by ΔT × 0.5 (half-value distance), 
the flow distance needed is about x ≅ 2200 m.

3.1.12 � Harmonic temperature boundary 
condition for one-dimensional 
conductive–advective heat transport

3.1.12.1 � One-dimensional vertical conductive heat transport

One-dimensional vertical thermally diffusive transport caused by a har-
monic fluctuation of the surface temperature, superimposed by a geother-
mal gradient, is given by the extended classical equation of the periodic 
temperature profile below the soil surface (Gröber et al. 1955) assuming 
constant coefficients:

	 T z t T Gz T z
D t

z
D t

( , ) exp cos= − +








 +surface

t p t p

∆
π π

2ππ t
tp









 	 (3.85)
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136  Thermal use of shallow groundwater

Note that at soil surface, z = 0, and with increasing soil depth, z < 0. 
The symbol Tsurface (K) is the mean soil surface temperature, ΔT (K) is the 
amplitude of the temperature fluctuation at the surface, G (K m−1) is the 
geothermal gradient, Dt (m2 s−1) is the thermal diffusion coefficient of 
the soil, and tp (s) is the period of the harmonic temperature development 
(tp = 365.25 days for seasonal fluctuations).

3.1.12.2 � One-dimensional horizontal conductive/
dispersive–advective transport

Let us consider a horizontal aquifer layer with uniform flow in the 
x-direction. Top and bottom layers are assumed to act as insulators. One-
dimensional horizontal diffusive/dispersive and advective heat transport is 
described by the differential equation

	
∂
∂

= ∂
∂

− ∂
∂

T
t

D
T

x
u

T
xt,L t,x

2

2 	 (3.86)

At location x = 0, the prescribed harmonic temperature boundary con-
dition applies, for example, as the result from river water inflow with sea-
sonal temperature fluctuation:

	 T(x = 0, t) = T0 + ΔTcos(ωt)	 (3.87)

The second boundary condition is T(x → ∞) = 0. The coefficient ω is the 
angular frequency with

	 ω π= 2
tp

	 (3.88)

where tp is the period. The solution is of the form (after Burger et al. 1984)

	 T(x, t) = T0 + ΔTexp(−ax)cos(−bx + ωt)	 (3.89)

The coefficients a and b are the attenuation coefficient and the wave 
number, respectively. In order to fulfill the differential equation and its 
boundary conditions, the coefficients are chosen as follows:

	 b

u
D

u
D

D
a

bu
bD

=

− +






+

= −
t
2

t,L

t
2

t,L

t,L

t

t

4 4

2 2

2

2ω
ω

;
,,L

	 (3.90)
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Analytical solutions  137

One-dimensional harmonic horizontal conductive/dispersive–advective 
transport may correspond to infiltration of river water into an aquifer or to 
a dense array of heat exchangers with harmonic temperature variation in 
the vertical plane of an aquifer with uniform flow conditions.

A scaled evaluation for the period t D up t,L t/= 2 is shown in Figure 3.20. It 
visualizes the damping effect of thermal conduction and macrodispersion 
for the selected angular frequency.

If, based on experimental data, the coefficients a and b can be evaluated, 
the parameters ut and Dt,L can be determined as follows:

	 D
a

b a b
u

a b
b a bt,L t=

⋅ +
= ⋅ −

⋅ +
ω ω

( )
;

( )
( )2 2

2 2

2 2 	 (3.91)

As an illustration, we select the measured temperature data of Trüeb 
(1976). He measured temperature time series within a borehole located at 
a distance of 500 m from the infiltrating River Rhine north of Zurich. 
Measurements were performed before and after the construction of the dam 
Rheinau (Figure 3.21), which completely changed the groundwater flow 
regime after 1957, but not so much the flow direction. From the time delay 
Δt ≅ 180 day, the coefficient b can be evaluated for the situation before exis-
tence of the dam, yielding the angular frequency ω = 6.28 year−1 = 0.0172 
day−1 to be b ≅ 6.2 × 10−3 m−1. The temperature amplitude of the river water 
was ΔT0 ≅ 8.3 K, and in the borehole, an amplitude of ΔT1 ≅ 1.5 K was 
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Figure 3.20  �Harmonic boundary condition in one-dimensional semi-infinite aquifer. Di
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138  Thermal use of shallow groundwater

observed. Therefore, the coefficient a is evaluated as a ≅ 3.4 × 10−3 m−1, 
and the coefficients Dt,L ≅ 190 m2 day−1 and ut ≅ 1.5 m day−1 result from 
using Equation 3.91. The longitudinal thermal macrodispersivity would 
be βL ≅ 128 m. Thermal diffusion can be neglected. For the situation after 
construction of the dam, the time delay was Δt ≅ 84 day, and the ratio ΔT1/
ΔT1 ≅ 4.5/8.3. Further, Dt,L ≅ 740 m2 day−1 and ut ≅ 4.1 m day−1. The cor-
responding longitudinal thermal macrodispersivity in that case is βL ≅ 179 
m. The longitudinal thermal dispersivity is roughly constant for both cases. 
However, we have to keep in mind that the harmonic model assumes that 
top and bottom layers act as insulators.

Equation 3.89 can also be applied to the vertical case as described in 
Section 3.1.12.1, including the assumption of constant vertical thermal 
advection due to uniform recharge.

A MATLAB script of the model for one-dimensional harmonic thermal 
conductive/dispersive–advective transport (Equations 3.89 and 3.90) is 
listed as Harmonic_temperature.m.

3.1.12.3 � Horizontal layer embedded in 
conductive bottom and top layer

An analytical approximation can be formulated by taking the effect of 
thermally conductive bottom and top layers into account. The prerequisite 
is that both layers are homogeneous and are both sufficiently thick. For 
example, in order to exclude an influence of the soil surface, the distance 
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Figure 3.21  �Measured temperature of Rhine River and groundwater observation well 
(500 m from infiltration) before and after the construction of the Rheinau 
dam (Switzerland) after Trüeb (1976). Month 0 = January 1953: filling from 
1957 on (about month 48).
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Analytical solutions  139

from soil surface to groundwater table has to be large enough. The one-
dimensional transient differential equation for the horizontal aquifer layer 
reads as follows:

	
∂
∂

= ∂
∂

− ∂
∂

+ +T
t

D
T

x
u

T
x

j

C m

j
t,L t,x

vert,top

m

vert,bot
2

2
ttom

mC m
	 (3.92)

with

	 j
T
z

j
y

vert,top top vert,bottom bott= − ∂
∂





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=
=

λ λ
0

; oom
∂
∂





 =

T
z

y 0

	 (3.93)

The concept for the horizontal temperature development in the aquifer 
layer is still the same as in Equation 3.89. For the vertical temperature fluc-
tuation, the following approach is taken:

	 T(x, y, t) = T0 + ΔTexp(−ax − a0y)cos(−bx − b0y + ωt)	 (3.94)

with

	

a b b
D

D C

D D D

0 0 0
0

0 0 0

0

2
= =

= = =

= =

; ;

;

ω

λ λ λtop bottom

top botttom

top bottom

;

;C C C0 = =

	 (3.95)

The vertical coordinate y0 starts at the upper and lower aquifer layer 
boundary. In order to fulfill the differential equation and its boundary con-
ditions, the coefficients a and b are chosen as follows:
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	 (3.96)
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140  Thermal use of shallow groundwater

Given the coefficients a and b, the parameters Dt,L and ut are evaluated 
as follows:

	

D
D

C
C m

b
a

b
a

a b

u
D a

t

t,L
m=

− ⋅ −






⋅ +

=
⋅ −

ω ω2 10
0

2 2

2

( )
;

( bb D
C

C m
a

2
0

02) + ω
m

	 (3.97)

For D0 = 0, Equation 3.91 is obtained.
The illustrative example of Section 3.1.12.2 with the infiltration of river 

water and the estimation of the parameters before and after the construc-
tion of the dam in the Rhine River can thus be reevaluated. Using the same 
coefficients a and b, the parameters Dt,L and ut are obtained as follows, 
assuming C0 = 1.6 × 106 J m−3 K−1, Cm = 2.4 × 106 J m−3 K−1, and D0 = 0.0972 
m2 day−1. Before construction of the dam, the parameters were Dt,L ≅ 167 
m2 day−1, ut ≅ 1.3 m day−1, and βL ≅ 128 m. After construction of the dam, 
they were Dt,L ≅ 614 m2 day−1, and ut ≅ 3.4 m day−1, and βL ≅ 178 m. The 
comparison with Section 3.1.12.2 shows that the top and bottom layers 
may show a distinct influence on the parameters. However, interestingly, 
the values for longitudinal thermal macrodispersivity did not change with 
the new model. Again, very roughly, it is about constant for both cases. It 
has to be mentioned that the sensitivity of the parameters with respect to 
the values of a and b is relatively large.

3.2 � OPEN SYSTEMS

Open systems in shallow aquifers often consist of one or several extraction 
wells and facilities for the injection into more or less uniform flow fields, 
which can be modeled as local infiltration wells. An overview on avail-
able analytical solutions for open systems is given in Table 3.1. This table 
shows that heat conduction is treated differently depending on the analyti-
cal solution. The analytical approach presented by Guimerà et al. (2007), 
for instance, does not account for heat transfer into the confining layers. 
On the other hand, some analytical approaches do not account for heat 
conduction within the aquifer (Lauwerier 1955; Malofeev 1960; Yang and 
Yeh 2008). In the following, we present some analytical solutions to flow 
and heat transport problems.
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Table 3.1  Available analytical solutions for open systems

Source 

Flow type Heat conduction in aquifer Heat conduction in confining layers Top boundary condition 

Linear Radial Arbitrary Linear Radial Caprock Bedrock
Variable 

temperature
Heat 

exchange

Lauwerier (1955) x inf inf
Malofeev (1960) x inf inf
Avdonin (1964) x x inf inf
Avdonin (1964) x x inf inf
Guimerà et al. 
(2007)

x x – –

Chen and Reddell 
(1983)

x x inf inf

Voigt and Haefner 
(1987)

x x fin inf x

Güven et al. (1983) x x fin inf x
Yang and Yeh 
(2008)

x fin fin

Gringarten and 
Sauty (1975) 

x inf inf

Note:	 inf: infinite extent; fin: finite extent (constant aquifer thickness).
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142  Thermal use of shallow groundwater

3.2.1 � Analytical solution for steady-state 
flow in multiple well systems

Open systems are often operated at quasi–steady state. Therefore, steady-
state flow in multiple well systems of idealized two-dimensional aquifers 
with uniform flow is of high interest. In this section, we would like to recall 
results of analytical solutions for the computation of isolines for piezomet-
ric head and stream function as a result of local sources and sinks (constant 
rate recharging and/or pumping wells, single wells, or series of wells) in a 
uniform horizontal flow field of an infinite and confined aquifer without 
areal recharge. The hydraulic conductivity Kw, as well as the thickness m 
of the aquifer, are assumed to be constant. The computation is performed 
analytically, and graphs of isolines of both the head and the stream func-
tion can be produced. The results are also approximately valid for phreatic 
aquifers, provided that the rise and decline of the groundwater table are 
small compared to the thickness of the aquifer.

The computation is performed in a homogeneous horizontal x–y system 
making use of the superposition principle. According to the potential flow 
theory, the specific discharge vector can be expressed by

	 q = −Kw∇hw = −∇φ	 (3.98)

where φ is the velocity potential with φ = Kwhw. For a uniform flow field, 
the velocity potential is given by

	 φ(x, y) = −q0∙(xcosα + ysinα)	 (3.99)

q0 is the specific flux of the regional flow field, and α is the flow direction 
with respect to the x-axis (Figure 3.22). The stream function ψ(x, y) of the 
uniform flow field is

	 ψ(x, y) = −q0∙(ycosα + xsinα)	 (3.100)

For a single well (Figure 3.23), the velocity potential is (Bear 1979)

	 ϕ
π

( , ) ln
( ) ( )

x y
Q m x x y y

R
= − + −





/ w w

w
24

2 2

	 (3.101)

where Q is the recharge or pumping rate (Q > 0: recharge; Q < 0: pump-
ing); xw and yw are the coordinates of the well. Rw is the radius of influence 
of the well, and m is the aquifer thickness. An influence of the finite well 
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Analytical solutions  143

radius rw on the flow is disregarded. The stream function of a single well 
(Figure 3.23) is

	 ψ
π

( , ) tanx y
Q m y y

x x
= −

−






−/ w

w2
1 	 (3.102)

The computation of the head around a single well is based on the concept 
of a finite radius of influence of the well. According to this concept, it is 

x

y

Pumping well
(xp´yp)

P (x, y)

Recharge well

q0

a a

βr

(xr´yr)

αβp

Figure 3.22  �Double well system with recharge well and pumping well in uniform flow 
field q0.

x

y

Well (xw,yw)
with recharge rate Q(t)

P (x, y)

Figure 3.23  �Well with recharge rate Qw and observation point P.
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144  Thermal use of shallow groundwater

assumed that the decline or rise of the head is zero at a distance of Rw. The 
result is only approximately valid inside of the zone of influence. Outside 
of the zone, results are inaccurate. In the case of a two-well system (Figure 
3.22) with pumping and recharging wells of opposite recharge and pump-
ing rate ±Q and same well radius rw, the result of the superposition is valid 
in the whole domain regardless of the value of Rw (also outside of the zone 
of influence). The result is then independent of the radius of Rw. The same 
result is obtained by a consideration of a straight constant head line (e.g., a 
river or lake) by applying the method of images (introduction of a fictitious 
image well with opposite rate). In general, the solution becomes indepen-
dent of the radius Rw if the pumping and infiltration rates of all wells sum 
up to zero.

An example of the flow field for a system with one pumping well and 
two injection wells with Qp = −2QR in a uniform flow field aligned with 
the direction defined by the pumping well and the central point between 
the two recharging wells is shown in Figure 3.24 in scaled form. The 
length scale is the half-distance a between the pumping well and the cen-
ter between the recharge wells. Regional flow with specific discharge q0 is 
from left to right. The pumping rate is chosen as QP = πm aq0. It can be 

−2 −1 0 1 2
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Figure 3.24  �(See color insert.) Scaled flow field with α = 0 and scaled pumping rate; one 
pumping well and two injection wells. P: pumping well; R1, R2: recharge wells.
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Analytical solutions  145

seen that downstream of the pumping well, a stagnation point appears. 
Two further stagnation points are located upstream of the recharge wells. 
Furthermore, it can be seen that stream tubes from the regional flow pass 
between the wells. Note that the thick blue line in Figure 3.24 is due to the 
discontinuity of the stream function caused by the wells. The discontinuity 
is not necessarily a streamline.

3.2.1.1 � Double well system in uniform flow field

The velocity potential of a double well system with pumping and recharg-
ing well in a uniform flow field with direction α (Figure 3.22), where both 
the recharge well and the pumping well have the same constant discharge 
rate Q (>0), is (DaCosta and Bennett 1960)

	 ϕ α α
π

( , ) ( cos sin ) ln
( )
( )

x y q x y
Q m x a y

x a
= − ⋅ + + + +

+0

2 2

24
/

++





y2 	 (3.103)

The symbol a is the half-distance between the wells. The corresponding 
stream function is (DaCosta and Bennett 1960)

	

ψ α α
π

θ θ( , ) ( cos sin ) ( )

( cos

x y q y x
Q m

q y

= − ⋅ − + −

= − ⋅

0

0

2
/

r p

αα α
π

− +
− −







−x
Q m ay

a x y
sin ) tan

/
2

21
2 2 2

	 (3.104)

By introducing the dimensionless pumping rate χ with

	 χ
π

= Q
maq0

	 (3.105)

and dividing Equation 3.104 by the pumping rate, we obtain

	 ψ
πχ

α α
π

θ θ( , )
cos sin ( )

x y
Q m

y
a

x
a/ p r= − ⋅ −





 + −1 1

2
	 (3.106)

For flow parallel to the x-axis (angle α = 0), the flow field is shown in 
Figure 3.25 for the dimensionless pumping rates β = 0.5 (weak discharge 
rate; Figure 3.25a), β = 1 (Figure 3.25b), and β = 2 (strong discharge rate; 
Figure 3.25c). By analyzing these flow fields, it can be seen that for β = 0.5 
(Figure 3.25a), the limiting streamlines of the wells, which define the well 
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Figure 3.25  �(See color insert.) (a) Scaled flow field with α = 0 and scaled pumping rate 
χ = 0.5. P: pumping well; R: recharge well. (b) Scaled flow field with α = 0 
and χ = 1. (c) Scaled flow field with α = 0 and χ = 2. (d) Scaled flow field with 
α = 90° and χ = 1.
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Figure 3.25  �(Continued) (a) Scaled flow field with α = 0 and scaled pumping rate χ = 0.5. 
P: pumping well; R: recharge well. (b) Scaled flow field with α = 0 and χ = 1. 
(c) Scaled flow field with α = 0 and χ = 2. (d) Scaled flow field with α = 90° 
and χ = 1.
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148  Thermal use of shallow groundwater

recharge and discharge regions, are well separated from each other. Part of 
the region between the wells is flushed by regional flow. This situation is 
characterized by two stagnation points along the x-axis. For β = 2 (Figure 
3.25c), the limiting streamlines of the wells intersect and show a distinct 
recirculation between the wells. This effect is visible by the fact that one or 
more stream tubes start at the recharge well and end at the pumping well. 
In this case, two stagnation points appear along the y-axis. For the critical 
case with β = 1 (Figure 3.25b), the limiting streamlines join at point x = 0, 
y = 0, which is the only stagnation point. The three cases can also be char-
acterized by analyzing the location of the stagnation points. In general, two 
stagnation points show up. At a stagnation point, by definition, the compo-
nents qx and qy of the discharge vector vanish, that is (for α = 0),

	

q x y q
Q

m
a x

a x y
a x

a xx( , )
( )

( )
( )

(s s
s

s s
2

s= + ⋅ − −
− +

− +
+0 22π ss s

2

s s
s

s s
2

)

( , )
( )

2

2

0

2

+








 =

= ⋅ −
− +

−

y

q x y
Q

m
y

a x y
y

y π
ss

s s
2( )a x y+ +









 =2 0

	 (3.107)

These two equations can be rearranged as follows:

	

Qa
mq

a x y a x y a x
π 0

2 2
2

24⋅ − −( ) −  + + +( ) −
s

2
s
2

s
2

s
2

s
2 
 =

=

0

2 0
0

Qa
mq

x y
π s s

	 (3.108)

For this system, two solutions exist, one for xs = 0, and one for ys = 0. 
For xs = 0 (for α = 0)

	 y a
Q

maq
as = ± − = ± −

π
χ

0

1 1 	 (3.109)

which is meaningful for χ ≥ 1. This situation corresponds to Figure 3.25c. 
Equation 3.109 defines two stagnation points in general.

For the other case with ys = 0 (for α = 0)

	 x a
Q

maq
as = ± − = ± −1 1

0π
χ 	 (3.110)
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Analytical solutions  149

which is meaningful for χ ≤ 1. This situation corresponds to Figure 3.25a. 
For the critical case with χ = 1 (Figure 3.25b), xs = 0 and ys = 0. In this case, 
the two stagnation points merge to one at the origin. This is the case with 
minimum distance between the wells, where no recirculation between the 
wells occurs. Recirculation between the wells can be analyzed by evaluat-
ing the stream function passing through one stagnation point and the two 
wells and the stream function passing through the origin (DaCosta and 
Bennet 1960). Taking the difference yields half the recirculation rate. The 
total recirculation rate I can be expressed by using information on stagna-
tion point S1:

	 I x y x y
Q
ms s s s= ⋅ − = ⋅ +







+2 0 0 2
21 1 1 1[ ( , ) ( , )] ( , )ψ ψ ψ 	 (3.111)

or with information of stagnation point S2:

	 I x y
Q
m

x ys s s s= ⋅ − = ⋅ −






−2 0 0 2
22 2 2 2[ ( , ) ( , )] ( , )ψ ψ ψ 	 (3.112)

The recirculation rate denotes the rate that stems from the recharge well. 
Note the singularity of the stream function at the origin. Recirculation is 
characterized by a positive value. Negative values are an indication for the 
amount of regional flow between the wells. In such a case, no recircula-
tion occurs. After insertion of the coordinates of one stagnation point, the 
recirculation rate divided by the discharge rate Q is for χ ≥ 1 and α = 0 
(Bear 1979):

	
I
Q

= − − + −( )









−2 1
1 11

π χ
χ χtan 	 (3.113)

The recirculation rate I between the wells is zero for χ = 1, which has 
already been referred to as critical case. The corresponding half-distance a 
between the wells is for α = 0:

	 a
Q
mq

=
π 0

	 (3.114)

The related distance between the wells is d = 2a. Equation 3.114 repre-
sents the basis for the design of double well systems in parallel flow, aligned 
with the direction defined by the two wells (α = 0). Therefore, it has been 
used in the past in open systems for thermal use of shallow aquifers in 
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150  Thermal use of shallow groundwater

order to avoid recirculation and thus avoid pumping of cool or warm water 
stemming from the injection well. Note that the considerations are based 
on pure advection, thus neglecting thermal diffusion and transverse disper-
sion effects.

For the case where the flow field is not aligned with the direction defined 
by the two wells, that is, α ≠ 0, the location of the stagnation points can 
be found best by applying the theory of complex numbers (DaCosta and 
Bennett 1960):

	

x
a

y
a

s

s

= − + + −





= ± − + +

∓
1
2

1 1 2

1
2

1 1

2χ α χ χ α

χ α

cos cos

cos χχ χ α2 2−



cos

	 (3.115)

The permissible pairs of xs and ys are those of opposite sign. Recirculation 
between wells can be evaluated in a similar manner as stated above 
(Equations 3.111 and 3.112) by using the stream function at the stagnation 
points and the origin.

Evaluations of the recirculation by DaCosta and Bennet (1960) for dif-
ferent angles α indicate that for the critical case with χ = 1, there is no 
recirculation for the angles −101° ≤ α ≤ 101°. They further showed that the 
angle αmin for minimum recirculation is

	 cos minα
π

χ= =Q
aq2 20

	 (3.116)

For α = 60°, the amount of regional flow is maximum with I/Q = −0.14. 
This means that the design of the two-well system using Equation 3.114 is 
quite robust with respect to variations in the angle α of the regional flow 
field. For the ratio χ = 4/π = 1.273, recirculation between the wells occurs 
except at the angle α = 50.46°. This means that, theoretically, solutions 
without recirculation exist, where the half-distance a between the wells can 
be chosen to be smaller than the value in Equation 3.114. The correspond-
ing value for the half-distance a would be

	 a
Q
mqmin =

4 0

	 (3.117)

as stated, for example, by Mehlhorn et al. (1981). However, if recirculation 
has to be prevented, this situation is not recommended due to the variabil-
ity and uncertainty of the angle α of the flow field in practice.
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Analytical solutions  151

An example with α = 90° and χ = 1 is shown in Figure 3.25d. As can be 
seen, stream tubes from regional flow pass between the wells. Therefore, it 
is obvious that no recirculation occurs, as already expected from the dis-
cussion above. The related regional flow compared with Q is about −0.06 
(no recirculation).

A program (MATLAB script) to visualize steady-state flow nets (head and 
stream function isolines) for multiple well systems in a uniform flow field 
is wells_in_flow_field.m. Note that the stream function for wells shows 
a distinct singularity (step). It is plotted as a thick blue line. Streamlines 
across this singularity line are not necessarily continuous. Often, continu-
ity of streamlines can be achieved by proper choice of minimum and step 
values of the stream function contours.

The coded function (MATLAB script) for calculating the recirculation 
rate and the fraction of recirculation at the total pumping rate Q of double 
well systems is listed as recirculation_rate.m. For example, wells of a half-
distance a = 100 m, which are aligned with the flow field at the angle α = 0, 
with the pumping rate Q = 4000 m3 day−1 in an aquifer of thickness m = 
10 m, and a Darcy velocity q0 = 1 m day−1, yield a recirculation rate of I = 
18.1 m3 day−1 and a fraction of 0.0045 of water from the recharge well.

Lippmann and Tsang (1980) addressed the problem of advective thermal 
breakthrough time at the pumping well of a double well system, where the 
flow is aligned with the direction between infiltration and pumping well 
(α = 0, Figure 3.22). The breakthrough time is the time that is needed for 
the thermal front after starting a double well system to reach the pumping 
well. Thermal diffusion and dispersion are disregarded.

For the situation where no regional flow exists (i.e., q0 = 0), the break-
through time tb is (Lippmann and Tsang 1980)

	 t
md
Q

C
C

md
Q

Rb
m

w
t_ret= ⋅ = ⋅πφ

φ
πφ2 2

3 3
	 (3.118)

where Rt_ret is the thermal retardation factor after Equation 2.98, d = 2a is 
the distance between the wells, and Q is the pumping and infiltration rate. 
Lippmann and Tsang (1980) also provide an analytic approximation for the 
temperature development T(t) at the pumping well.

For the case where between pumping well and injection well a flow field 
q0 > 0 exists, the breakthrough time is determined by (Lippmann and 
Tsang 1980)

	 t
dR
q

A

A A
b = ⋅ −

− −


















−tφ
0

11
4

4 1

1

4 1
tan 	 (3.119)
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152  Thermal use of shallow groundwater

where the auxiliary variable A is

	 A
Q
mdq

=
2 0π

	 (3.120)

provided that the specific flow rate of the flow field q0 is smaller than that 
of the critical case according to Equation 3.114, that is,

	 q
Q
md0
2<

π
	 (3.121)

For larger flow rates, the breakthrough time is infinite or does not exist. 
The latter is also applicable for q0 < 0, that is, a flow direction from injec-
tion well to pumping well.

3.2.2 � Linear flow

Pioneering work by Lauwerier (1955) presented an analytical solution in 
which the flow pattern is linear. Heat conduction is considered in the verti-
cal direction toward the confining layers, which are assumed infinite in the 
z-direction (Figure 3.26). The analytical solution is as follows:

	 T U( , , ) erfc
( )

( )τ ξ η
ξ η

θ τ ξ
τ ξ=

+ −
−













−
1

2
	 (3.122)

z       –∞

Bedrock 2r = 0

z       ∞
Q

Aquifer

z = –m/2

r       ∞

z = m/2

Caprock 2

Figure 3.26  �Conceptual model of Lauwerier (1955) analytical solution. (Modified after 
Voigt, H.D. and Haefner, F., Water Resources Research 23 (12), 2286–2292, 1987.)
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subject to the following condition:

	
U

U

( )

( )

τ ξ τ ξ

τ ξ τ ξ

− = − ≤

− = − >

0 0

1 0

if

if
	 (3.123)

The quantities T, ξ, η, τ, and θ are dimensionless variables defined as

	 T
T T

T T
C
C

t

m C

x

m
= −

−
= = =0

0
2 2

4 4

inj

m

m2

m2

m

m2, , ,θ τ λ ξ λ
CC qw 0

	 (3.124)

	 η = ≥2
2

z
H

z
m

for 	 (3.125)

where T0 denotes the initial temperature of the aquifer, Tinj is the injection 
temperature, and Cm2 and λm2 are the volumetric heat capacity and thermal 
conductivity of the confining layers, respectively.

Avdonin (1964) gets rid of one of the restrictions from Lauwerier (1955) 
by adding thermal conduction also in the flow direction (x-direction). The 
analytical solution is as follows:

	 T
x x= − −

















∫πλ τ

γ λ τψ
λ τψ

τ

e

e

e

/
exp erfc

2

2

0

1
λλ ψ

ψ

ψ
ψ

e d2

2 2
2 1a −











 	 (3.126)

where:

	 λ λ λ γ
λ

λ
λe m m2

w

m

m2 m

m m2

/ ; ; ;= = = =mq C
x

x
m

a
C

C
0

4
2

	 (3.127)

Further details of the equations from Lauwerier (1955) and Avdonin 
(1964) can be found in Spillette (1965). Figure 3.27 shows the comparison 
of the two equations considering linear flow. The only difference lies in 
the consideration of thermal conduction in the longitudinal direction of 
Equation 3.126.

The coded functions (MATLAB scripts) of Equations 3.122 and 3.126 
are listed as T_lau_linear.m and T_avd_linear.m, respectively. As an exam-
ple, Figure 3.28 shows the temperature response at 1 m downstream from 
the injection well. Consideration of thermal conduction in the longitudinal 
direction (Equation 3.126) results in a smooth temperature response.
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Figure 3.27  �Normalized temperature T T T T T= − −( ) ( )0 0/ inj  as a function of distance for 
linear flow equations (q0 = 1 × 10−5 m s−1, m = 10 m, λm = λm2 = 2.5 W m−1 K−1). 
Temperature profiles shown at 10, 20, 50, and 100 days.
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Figure 3.28  �Temperature response over time at 1 m downstream from injection well 
(q0 =1×10−5 m s−1, m = 10 m, mλm = λm2 = 2.5 W m−1 K−1). Equation 3.122: 
Lauwerier (1955); Equation 3.126: Avdonin (1964).
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Analytical solutions  155

3.2.3 � Radial flow, infinite disk source

Guimerà et al. (2007) modify the two-dimensional transient solute transport 
analytical solution after Gelhar and Collins (1971), which estimates contami-
nant distribution in porous media due to a fully penetrating injection well for 
zero flow conditions, used for calculating the temperature distribution due to 
an injection well of a groundwater heat pump system. The modified equation 
for horizontal conductive heat transport, from a continuous point source with-
out groundwater flow after Guimerà et al. (2007), is given by

	 T
T T
T T

r R

R R
C A

= −
−

= −

+

0

0

2 2

3 4

1
2

2
4

3

inj

tw

L tw m tw

m T

erfc
β λ

























1 2/ 	 (3.128)

where Rtw represents the thermal radius of influence.

	 R A ttw T= 2 	 (3.129)

	 A
QC

mCT
w

m

=
2π

	 (3.130)

The previous analytical solution does not take axial effects into account. 
It assumes that there is no heat exchange with the upper and lower layers. 
For radial type flow, however, when there is a minor influence of the natural 
groundwater flow, axial effects might become important, especially for long-
term simulations. Malofeev (1960) and Avdonin (1964) present analytical 
solutions with radial flow considering axial effects. Malofeev (1960) slightly 
modified the Lauwerier solution in order to apply it to radial flow. The dimen-
sionless parameters shown in Equation 3.125 are changed as follows:

	 ξ λ π= 4 2
m2

w

r
mC Q

	 (3.131)

As in the linear flow, Avdonin (1964) adds thermal conduction in the 
horizontal direction, resulting in the following equation:

	 T
v

r r
y

v

=



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

−





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
∫1

4 4

2 2
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exp erf

λ τ λ τe e
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/ de

2 1 2 1
a

v
−









 + 	 (3.132)

	 v
QC

m
r r m= =w

m

and /
4

2
π λ

	 (3.133)
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156  Thermal use of shallow groundwater

Figure 3.29 shows the temperature response for the case considering 
radial flow. Avdonin (1964) and Malofeev (1960) account for heat transfer 
within the confining layers. Hence, there is higher dissipation of heat.

There are other approaches that consider a finite length of the overlying 
layer (Chen and Reddell 1983; Voigt and Haefner 1987) and surface heat 
exchange (Güven et al. 1983).

The coded functions (MATLAB script) of Equations 3.128, 3.131, and 
3.132 are listed as T_guimera.m, T_lau_radial.m, and T_avd_radial.m, 
respectively. As an example, Figure 3.30 shows the temperature response at 
a radial distance of 1 m away from the injection well.

3.2.4 � Natural background groundwater flow

To our knowledge, there is no exact analytical solution to simulate the tem-
perature response of an aquifer considering an injection well and natural 
background groundwater flow. Therefore, we can only use in an approxi-
mation the closest exact analytical solutions for closed systems.

By considering the following energy relationship:

	 q
QC T T

mtb =
⋅ −w inj( )0 	 (3.134)

Equation 3.50, for instance, can be used, resulting in the following 
equation:
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	 (3.135)

Making use of the Hantush approximation:
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π
	 (3.136)

we can express Equation 3.135 as follows:

	 T x y t T
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	 (3.137)
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Figure 3.29  �Normalized temperature T T T T T= − −( ) ( )0 0/ inj  as a function of distance for 
radial flow equations (Q = 9 m3 day−1, m = 1 m, λm = λm2 = 2.5 W m−1 K−1). 
Temperature profiles shown at 1, 10, and 50 days.
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Figure 3.30  �Temperature response over time at a radial distance of 1 m from injection 
well (Q = 9 m3 day−1, m = 1 m, λm = λm2 = 2.5 W m−1 K−1). Equation 3.128: 
Guimerà et al. (2007); Equations 3.122 and 3.131: Malofeev (1960); Equation 
3.132: Avdonin (1964).
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where r x y D D= +2 2
t,L t,T/ . Assuming λm = 0, the above equation is reduced 

to the equation given by (Keim and Lang 2008)
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QC T T
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x r
( , , )

( )
exp= +

⋅ − −





0

0

4 2
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m T t Lπβ β 


−











1

2r

r u t

u t
erfc t

t Lβ
	 (3.138)

This analytical solution is currently used as a regulatory tool for installa-
tion, design, and management of open-loop systems in the Federal State of 
Baden-Württemberg, Germany (Baden-Württemberg 2009).

Using this approach, thermal plume lengths due to heat advection and 
conduction can be estimated. As explained before, however, this procedure 
does not consider the hydraulic influence of the injection well.

There are other approximations that account for groundwater flow. 
Kobus and Mehlhorn (1980), for instance, develop a two-dimensional 
analytical approximation for simulating transient axial heat conduction 
through the confining layers of a confined aquifer due to groundwater heat 
pump systems. The groundwater flow velocity is used for calculating the 
distance from the source location to a hypothetical line that represents 
the border between the natural groundwater streamlines and the stream-
lines diverted due to the local gradient around the injection well. Rauch 
(1992) developed an analytical formulation for heat transport in aquifers 
using the groundwater velocity parameter similar to Kobus and Mehlhorn. 
Additionally, based on a deviation angle of the groundwater flow direc-
tion and thermal dispersive transport analyses, the lateral temperature dis-
tribution in porous media due to heat conduction is predicted. The basic 
approach of the previous method is presented by Ingerle (1988) and is cur-
rently used in a regulatory guideline of the Austrian Association for Water 
and Waste Management (ÖWAV 2009).
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