
1. Introduction
Island groundwater resources often form freshwater lenses overlying saline groundwater. When water is with-
drawn from a freshwater lens by a pumping well, saline groundwater migrates upwards toward the well. This 
vertical seawater intrusion process, also called saltwater upconing, is a major concern when managing well 
fields. Freshwater lenses of island aquifers have been described as being more vulnerable than continental coastal 
aquifers, since vertical migration distances associated with upconing are shorter than horizontal ones (Jiao & 

Abstract Pumping optimization under uncertainty is a powerful approach for the management of 
groundwater resources, and its implementation would be valuable in island aquifers where freshwater lenses 
are affected by seawater intrusion. Sharp-interface numerical models are especially well suited for the task 
as they offer fast simulation times, but to date they have not been used because of a lack of guidelines and 
due to the specific challenges associated with this approach. This study presents a methodology for pumping 
optimization under uncertainty for island freshwater lenses using a sharp-interface model (MODFLOW-SWI2) 
and demonstrates it for a real case (Magdalen Islands, Quebec, Canada). The total pumping in a well field 
was maximized while avoiding well salinization due to upconing. To do so, the sharp interface simulated 
below the pumping wells was corrected successively for cell-to-well upconing and for dispersion. Pumping 
optimization under uncertainty was then conducted using PESTPP-OPT, considering parameter and observation 
uncertainty, and was repeated for 23 reliability levels to illustrate a large range of risk-averse, tolerant and 
neutral stances. The maximum pumping was obtained as a function of risk of well salinization. This approach 
enabled quantification of the tradeoffs between pumping and risk, allocation of pumping amongst wells, and an 
examination of the ability of the well field to meet the water demand while maintaining an acceptable level of 
risk. Ultimately, this framework allows groundwater managers to select the final pumping scenario themselves, 
depending on their attitude toward risk.

Plain Language Summary Fresh groundwater is an important source of drinking water in 
island environments, but its proximity to seawater makes it vulnerable to salinization. In these areas, fresh 
groundwater is often contained in a lens that overlies saline groundwater. Pumping within the freshwater lens 
to extract drinking water causes saltwater to migrate toward the pumping well, a phenomenon called saltwater 
upconing. As a result, water managers need to balance meeting the water demands of the local community 
with avoiding saltwater contamination of local drinking water supplies. Computer simulations of groundwater 
flow are commonly used to inform groundwater management decisions, but the uncertainties associated with 
these simulations are usually neglected, often resulting in the consideration of a single management solution. 
To improve water management strategies in freshwater lenses, we developed a new technique to evaluate the 
maximum amount of freshwater that can be safely pumped from the lens while recognizing the impact of 
simulation uncertainties on management solutions. Multiple pumping rate scenarios were generated, each 
associated with a different risk of well contamination between 0% and 100%. This method allows local water 
managers to then choose their preferred pumping scenario depending on the level of risk that they consider to 
be acceptable.
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Post, 2019). They have also been described as requiring particular attention when solving coastal groundwater 
management problems (Ketabchi & Ataie-Ashtiani, 2015). In these environments, determining sustainable yields 
using pumping optimization under uncertainty is valuable, since optimization methods provide transparent and 
optimal solutions to management problems, and since quantifying how modeling uncertainties affect manage-
ment solutions is crucial for informed decision-making (Horne et al., 2016; White et al., 2018).

Sharp-interface (SI) numerical models assume that freshwater and seawater are immiscible and separated 
by a sharp boundary, whereas advective-dispersive-based variable-density (VD) models explicitly simulate 
mixing between freshwater and seawater by solving both the variable-density groundwater flow equation and 
the advection-dispersion equation for solute transport. SI models are most useful for simulating regional-scale 
seawater intrusion, where dispersion can be neglected. In island aquifers, SI models are commonly used to assess 
the extent of freshwater lenses and establish water budgets (Izuka et  al.,  2021; Lotti et  al.,  2021; Shuler & 
Mariner, 2020), while their fast simulation times also facilitate parameter estimation and quantification of predic-
tive uncertainty (Coulon et al., 2021). Because of their rapid simulation times, SI models are widely used to opti-
mize pumping rates in continental coastal aquifers, which are faced with the threat of lateral seawater intrusion 
(Kopsiaftis et al., 2019). However, they have not yet been used for pumping optimization in island freshwater 
lenses where vertical seawater intrusion (i.e., upconing) is a major risk. This is because pumping and upconing 
lead to increased dispersion and a widening of the transition zone below the pumping wells, which violates the 
sharp interface assumption.

Furthermore, conducting pumping optimization under uncertainty is rare both in coastal and island aquifers 
because of its high computational cost. Previous work on optimized saltwater intrusion management has been 
mainly dedicated to deterministic problems (Ketabchi & Ataie-Ashtiani, 2015). Predictive uncertainty due to 
insufficient knowledge of recharge, hydraulic or transport parameters was included by training surrogate or meta-
models (e.g., Lal & Datta, 2019; Rajabi & Ketabchi, 2017). While surrogate models are a popular choice to 
replace computationally demanding physically based models, in practice they are limited because of the consid-
erable effort needed for training surrogates, the need to verify optimized solutions with physically based models 
and the significant expertise that is needed for their robust application. Many optimizations under uncertainty 
have remained limited to hypothetical or simplified real-world cases (Mostafaei-Avandari & Ketabchi, 2020) and 
guidance is lacking for their implementation in real-world cases (Ketabchi & Ataie-Ashtiani, 2015). The objec-
tive of this paper is therefore to provide a methodology for pumping optimization under uncertainty in a fresh-
water lens, using a SI model. The approach is then demonstrated for the Magdalen Islands (Quebec, Canada).

A SI numerical model is first developed for an island freshwater lens, using MODFLOW-SWI2 (Bakker 
et al., 2013). After postprocessing the interface simulated by SWI2 under pumping wells, pumping optimization 
under uncertainty is conducted using PESTPP-OPT (White et al., 2018) for a wide range of risk-averse, tolerant 
or neutral stances, to understand how modeling uncertainties and attitude toward risk affect optimal management 
strategies. This workflow uses widely available hydrogeological software and all Python scripts are available to 
promote transparency and reproducibility.

2. Study Area
The Magdalen Islands (Quebec, Canada) are an archipelago in the Gulf of Saint-Lawrence in which fresh ground-
water is the sole water supply for its 12,000 permanent inhabitants and its 70,000 yearly visitors. As the water 
resources are under pressure due to climate change, hydrocarbon exploration and intense tourism, a groundwater 
knowledge acquisition project was launched (a) to assess groundwater resources at the island scale and (b) to 
provide sustainable groundwater pumping scenarios. On Grande Entrée Island, which is the most vulnerable 
island to seawater intrusion because of its shallow saline groundwater, the development of a SI model, parameter 
estimation and linear uncertainty analysis allowed for an assessment of the extent of the freshwater lens (Coulon 
et al., 2021). In this paper, pumping optimization under uncertainty is conducted to provide decision-support for 
the management of municipal groundwater pumping.

Grande Entrée Island has an area of 8.5 km 2, with low-lying topography and negligible surface water. The main 
aquifer formation is a highly permeable Permian sandstone with an estimated thickness of 300 m (Brisebois, 1981). 
Sand dunes are found locally and low-permeability glacial sediments fill a paleovalley in the middle of the 
island (Figure 1). Recharge has been evaluated at 559 mm/year, representing approximately 54% of the annual 
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precipitation (Lemieux et al., 2022). The reader is referred to Coulon et al. (2021) for more details on the study 
area. Nine municipal wells have been pumping water from the freshwater lens since 2013, with pumping rates 
and water levels being recorded since mid-2014. Between 2014 and 2019, average pumping rates at these wells 
were below 25 m 3/day, for a total pumping rate in the well field close to the 110 m 3/day water demand (Lemieux 
et al., 2022). Apart from one screened well, all wells are open boreholes which do not contain casing or screening 
(aside from a casing near the ground surface to prevent erosion or cave-in). The freshwater-saltwater transition 
zone can be observed in 7 deep, open observation wells present in the study area (Figure 1). The transition zone 
is relatively narrow (8 m on average) compared to the estimated aquifer thickness (around 300 m), suggesting 
that hydrodynamic dispersion is less important than advection, and it is relatively shallow (around 45 m below 
local sea level) relative to well bottom elevations (between 11 and 32 m below local sea level), indicating that 

Figure 1. Map of Grande Entrée Island with seaward extent and geological formations, locations of pilot points, pumping wells, and model observations. Domestic 
wells are not shown. Modified from Coulon et al. (2021).
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the municipal pumping wells are under threat of upconing. For the rest of 
the paper, the term “pumping wells” will be used to refer to the municipal 
pumping wells only (excluding domestic wells).

3. Methods
3.1. Numerical Model

The numerical model, the parameter estimation procedure and results are 
described in detail in Coulon et al. (2021). A sharp-interface, 2D-horizontal 
model with a regular, 20 × 20 m grid was developed for the island (Figure 1) 
using the SWI2 package (Bakker et  al.,  2013) for MODFLOW-2005 
(Harbaugh,  2005). SWI2 simulates vertically integrated variable-density 
groundwater flow using zones of different density separated by sharp inter-
faces, but does not account for diffusion and mechanical dispersion as in 
advective-dispersive-based VD models. The single model layer contained 
constant-density freshwater and seawater zones separated by a sharp inter-
face representing the 50% seawater salinity (total dissolved solids or TDS) 
contour (i.e., a mix of 50% seawater and 50% freshwater). Pumping wells 

were simulated using the revised multinode well package (MNW2 package, Konikow et al., 2009), in order to 
assimilate water level observations during parameter estimation (Coulon et al., 2021) and to correct the simulated 
interface for cell-to-well upconing during pumping optimization (Section 3.2.2). The heterogeneous hydraulic 
conductivity field was parameterized by combining zones of constant hydraulic conductivity and pilot points 
(Doherty, 2003). Homogeneous effective porosity and specific yield values were implemented for all cells, and a 
uniform recharge rate was implemented on land cells.

Regularized parameter estimation was carried out using PEST_HP (Doherty, 2020). The model was calibrated 
under steady-state conditions with boundary conditions representative of the period 2014–2019. Fifty-eight 
model parameters were adjusted, including 56 hydraulic conductivities, surface recharge and transverse disper-
sivity. The latter was used as a correction factor for the sharp interface (Coulon et al., 2021), since for steady-state 
flow conditions with dominantly horizontal flow, the development of a transition zone is mainly controlled by 
transverse vertical dispersion (Jiao & Post, 2019). Parameter estimation was constrained by 162 observations, 
including freshwater head observations extracted from shallow wells, deep open wells and pumping wells, as well 
as interface observations (i.e., elevations of the freshwater-seawater interface) derived from electrical conduc-
tivity profiles at deep open wells, time-domain electromagnetic (TDEM) and electrical resistivity tomography 
(ERT) surveys (Figure 1). Parameter estimation required 1,847 simulations, which took a total of 10.5 hr using 
70 cores at 2.1 GHz. The posterior parameter set was used throughout the rest of the study (Table 1), since it 

represents the minimum error variance parameter set resulting in minimum 
error variance predictions.

The steady-state freshwater lens that would be obtained without pumping 
was chosen as the initial condition for the pumping optimization (Figure 2). 
This was achieved by running a long transient simulation (500 years) under 
the average stresses of the calibration period, but without pumping.

3.2. Postprocessing of the Simulated Interface

3.2.1. Defining Well Salinization

Bakker et al. (2013) demonstrated the use and accuracy of the SWI2 pack-
age to simulate upconing below a pumping well, through two examples. In 
a radial upconing problem, they found that the freshwater-seawater interface 
simulated by SWI2 closely resembled the 50% seawater salinity contour 
simulated by the advective-dispersive-based SEAWAT model (Langevin 
et al., 2008). They also presented an application of SWI2 for the simulation 
of upconing in an island freshwater lens. While SWI2 simulates the 50% 

Parameter Mean 95% confidence interval

Ksand dunes (m/s) 5 × 10 −4 5 × 10 −6–5 × 10 −2

Ksandstones (m/s) (offshore) 3 × 10 −4 4 × 10 −5–2 × 10 −3

Ksandstones (m/s) (52 pilot points) 2 × 10 −4 –

Kglacial sediments (m/s) 1 × 10 −4 3 × 10 −6–3 × 10 −3

Kseabed (m/s) 9 × 10 −6 5 × 10 −6–2 × 10 −5

Recharge (mm/yr) 547 401–693

Transverse vertical dispersivity αT (m) 6 × 10 −3 3 × 10 −4–1 × 10 −1

Note. Distributions were assumed log-normal or normal for recharge. The 
average value of the pilot point hydraulic conductivities is reported; 95% 
confidence intervals are not reported since they depend on pilot point 
location. Modified from Coulon et al. (2021).

Table 1 
Posterior Parameter Distributions Described by the Mean and the 95% 
Confidence Interval (i.e., the Mean ± 2 Standard Deviations)

Figure 2. Map of the steady-state freshwater lens under the average stresses 
of the calibration period, without pumping. This was the initial condition for 
the pumping optimization. The transect AB corresponds to the cross-section in 
Figure 11.



Water Resources Research

COULON ET AL.

10.1029/2021WR031793

5 of 18

seawater salinity (TDS) contour, it is expected that the salinity of the pumped water will increase due to disper-
sion before this contour reaches the well. In pumped water, a mixing of 1% seawater with freshwater will result 
in TDS concentrations of about 350 mg/L, equivalent to about 190 mg/L chloride, which is a conservatively low 
estimate of the 250 mg/L esthetic limit for potable water (WHO, 2003). The 1% figure is also quoted by Jiao and 
Post (2019). Therefore, this study considered well salinization to occur when the 1% seawater salinity contour 
(ζ1%) reached the bottom of the pumping well. In this case, pumped water salinity would not immediately reach 
1% seawater, since it depends on mixing effects in the well, and on well length and well diameter. Therefore, this 
definition was conservative, which was advisable since the consequences of well salinization can be long-lasting 
and there are no alternative drinking water sources on the island. To obtain ζ1% at pumping well locations, two 
postprocessing steps needed to be implemented successively on the interface simulated by SWI2: (a) correction 
for cell-to-well upconing and (b) correction for dispersion (Figure 3).

3.2.2. Correction for Cell-To-Well Upconing

A first analytical correction was applied to the interface simulated by SWI2, to correct for the difference between 
upconing in the model cell and upconing directly under the well (or cell-to-well upconing). This step was neces-
sary because finite-difference grids with large cell sizes cannot accurately represent heads and interface eleva-
tions under pumping wells with smaller radii. Drawdown and upconing at the well are underestimated as they are 
averaged across the cell area (Charbeneau, 1995; Dagan, 1995). With the MNW2 package (Konikow et al., 2009), 
the head simulated at the cell (hcell, in m above local sea level, or masl) was corrected for the difference between 
cell size and well radius using the Thiem (1906) steady-state flow equation, to obtain the head in the well (hwell, in 
masl). Then, Equation 1 was used to relate cell-to-well drawdown (s, in m) with cell-to-well upconing (∆, in m):

Δ =
𝑠𝑠

𝜀𝜀
 (1)

where s and ∆ are defined as:
{

� = ℎcell − ℎwell

Δ = �well − �cell
 (2)

and ε is the density ratio between the freshwater and seawater densities ρf (1,000 kg/m 3) and ρs (1,025 kg/m 3), 
respectively:

𝜀𝜀 =
𝜌𝜌s − 𝜌𝜌f

𝜌𝜌f

 (3)

Figure 3. Postprocessing implemented in cells containing pumping wells: (a) correction for cell-to-well upconing and (b) 
correction for dispersion. Recall that the 1% salinity (TDS) contour is considered representative of 250 mg/L chloride.
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Substituting Equation 2 into Equation 1, the interface elevation simulated at the cell (ζcell, in masl) could therefore 
be corrected for cell-to-well upconing, to obtain the interface elevation directly under the well (ζwell, in masl):

𝜁𝜁well = 𝜁𝜁cell +
ℎcell − ℎwell

𝜀𝜀

 (4)

Equation 1 corresponds to Equation 6 of Bower et al. (1999), which was originally developed to relate the critical 
rise of the interface under a pumping well to drawdown, in a model with immiscible freshwater and saltwater 
assuming the Ghyben-Herzberg relation.

3.2.3. Correction for Dispersion

A second analytical correction was applied to the interface simulated by SWI2, to obtain a first-order approxima-
tion of dispersion in the transition zone during pumping, and to obtain the elevation of the 1% seawater salinity 
contour (Figure 4). This analytical equation was originally developed by Bear and Todd (1960), to approximate 
the concentration distribution in the transition zone following the displacement of an initially sharp interface. 
They treated upconing as a 1D, upward solute transport process in an infinite and homogeneous domain. It 
was subsequently superimposed onto SI analytical solutions (Pauw et al., 2016; Schmorak & Mercado, 1969) 
and SI numerical models (Wirojanagud & Charbeneau,  1985), with modifications to incorporate an initially 
non-zero transition zone width. Schmorak and Mercado  (1969) compared the approach to field observations 
of upconing and found it was justified as a first approximation of the transition zone, while Wirojanagud and 
Charbeneau (1985) used it to reduce the prediction error caused by the simplification of physical processes. Pauw 
et al. (2016) explored the applicability of the approach for a wide range of parameters through comparison with 

Figure 4. Schematic widening of the transition zone during pumping when applying the first-order approximation for 
dispersion (Equation 5). Concentration profiles and corresponding transition zone widths (w) are shown at different times, 
starting from an initially zero transition zone width.



Water Resources Research

COULON ET AL.

10.1029/2021WR031793

7 of 18

the SEAWAT model, which is further discussed in Section  5.2. With this 
correction, the elevation of the 1% seawater salinity contour ζ1% (masl) could 
be calculated at any time t using:

𝜁𝜁1%(𝑡𝑡) = 𝜁𝜁SWI2(𝑡𝑡) + 2

√
𝑏𝑏𝑏𝑏

2 + 𝛼𝛼L|𝜁𝜁SWI2(𝑡𝑡) − 𝜁𝜁SWI2 init| erfc
−1

(
2
𝐶𝐶1%

𝐶𝐶s

)
 (5)

where ζSWI2 and ζSWI2 init are the interface elevations simulated by SWI2 (i.e., 
the 50% seawater salinity contour) at time t and the initial state (before pump-
ing), respectively (masl), Cs and C1% are the concentrations corresponding to 
pure seawater and 1% seawater (i.e., 0.01 · Cs), respectively (dimensionless 

ratio), αL is the longitudinal dispersivity (m), M is the initial width of the transition zone (m) defined as the 95% 
confidence interval around the 50% seawater salinity contour (i.e., ± two standard deviations, assuming a Gauss-
ian concentration distribution), and b is a constant defined by:

𝑏𝑏 =

⎛
⎜
⎜
⎜
⎝

1

4 erfc
−1

(
2
𝐶𝐶2.4%

𝐶𝐶s

)
⎞
⎟
⎟
⎟
⎠

2

 (6)

where C2.4% is the concentration corresponding to 2.4% seawater (i.e., 0.024 · Cs). ζSWI2 (Equation 5) was substi-
tuted by ζwell (Equation 4), while ζSWI2 init did not require correction for cell-to-well upconing since the initial 
pumping rate was zero (Section 3.1). Equation 5 was derived from Equation 6 in Pauw et al. (2016), and equation 
derivations for obtaining any x-percent seawater salinity contour are summarized in Appendix A. This approach 
assumes that mixing in the transition zone is due to longitudinal dispersion, while transverse dispersion and 
molecular diffusion are neglected. The assumption of homogeneous conditions in this correction was supported 
by the relative homogeneity of the aquifer formation and was consistent with the absence of vertical hydrau-
lic conductivity variations in the model. The assumption that molecular diffusion was negligible compared to 
mechanical dispersion was supported by the high hydraulic conductivity of the aquifer and is often assumed in the 
transition zone (Bear & Todd, 1960). Upconing needed to start in an initially pure freshwater column, therefore 
pumping optimization started in a steady-state freshwater lens without pumping.

The contribution of parameters αL and M introduced in Equation 5 was included in the calculation of constraint 
uncertainty (Section 3.3.3). Their mean values and 95% confidence intervals were estimated assuming Gaussian 
distributions (Table 2). Values for M were based on transition zone widths extracted from deep observation wells 
far from the pumping wells (Figure 1). These were assumed to represent the initial transition zone width under 
“natural” conditions. Values for αL, for which field data was unavailable, were calculated the following way: (a) 
the scale of the solute transport problem L was defined, (b) empirical formulas relating L to αL were applied on 
minimum, average, and maximum L values, and (c) statistical analyses were carried out on the resulting αL values. 
L was defined as the distance between the base of the well and the initial interface elevation simulated by SWI2 
(at steady state without pumping), which was 32 m on average. Scaling laws suggested by Neuman (1990) and Xu 
and Eckstein (1995) were applied (Table 3). The final αL values introduced in Equation 5 were approximately 2 to 
3 orders of magnitude higher than the αT value used as a general correction factor for the SI model (Section 3.1), 
which is consistent with published dispersivity ratios used in field-scale advective-dispersive transport modeling 
(Frind & Germain, 1986; Molson & Frind, 2012).

Parameter Mean 95% confidence interval

Initial transition zone width M (m) 8 5–11

Longitudinal dispersivity αL (m) 3 1–5

Note. Distributions are described by the mean and the 95% confidence 
interval (normal distributions assumed).

Table 2 
Model Parameters Introduced Into the Correction for Dispersion

Reference Empirical formula αL (L) αL (m) for Lmin = 21 m αL (m) for Lmean = 32 m
αL (m) for 

Lmax = 48 m

Xu and Eckstein (1995) 0.83 · (log(L)) 2.414 1.6 2.2 2.9

Neuman (1990) 0.017 · (L) 1.5 1.6 3.0 5.6

Table 3 
Formulas Relating Solute Transport Scale L to Longitudinal Dispersivity (αL), for the Minimum, Average and Maximum L 
Values Computed for the Study Area (Lmin, Lmean, and Lmax, Respectively)



Water Resources Research

COULON ET AL.

10.1029/2021WR031793

8 of 18

3.3. Pumping Optimization

3.3.1. Problem Formulation

The objective of the optimization was to maximize the freshwater withdrawals from the pumping wells, while 
avoiding well salinization due to seawater upconing. In mathematical terms, a single-objective optimization prob-
lem was defined:

Maximize� =
�
∑

�=1

��, subject to �1%� ≤ �botm � (� = 1, ..., �) (7)

where Φ is the management objective function (m 3/s), n is the number of pumping wells (nine in total), Qi vari-
ables are the pumping rates (withdrawals) applied in each pumping well i (m 3/s) or the decision variables of the 
optimization problem, ζ1% i is the elevation of the 1% seawater salinity contour under the ith pumping well (masl) 
and zbotm i is the elevation of the well bottom i (masl). Keeping ζ1% below zbotm at each pumping well constituted 
the model-derived optimization constraints. The risk of well salinization due to lateral seawater intrusion was 
neglected, since the pumping wells were far inland (Figure 1).

Pumping optimization was conducted under steady-state conditions, with average boundary conditions repre-
sentative of the calibration period (except for pumping rates). Starting from an initial state without pumping 
(Section 3.1), a long transient simulation was run (200 years), to allow the freshwater lens to reach a new steady 
state under the Qi values tested. The respect of the optimization constraints (Equation 7) was examined at the 
new steady-state condition. Model simulation times were short, averaging 8 min on a laptop computer (1.9 GHz 
Intel Core i7 ®).

3.3.2. Sequential Linear Programming

Pumping optimization was conducted using sequential linear programming (SLP) as implemented in the 
PESTPP-OPT software (White et al., 2018 and references herein). PESTPP-OPT requires (a) an expression of 
the management objective function as a linear combination of decision variables, (b) an approximately linear 
relation between decision variables and constraints, and (c) for FOSM-based chance constraints (Section 3.3.3), 
an approximately linear relation between parameters and constraints. As in the PEST software, model lineariza-
tion is performed through the computation of constraint sensitivities with a finite-difference scheme. The linear 
programming problem is then solved using the simplex algorithm (Dantzig et al., 1955). In the implementation 
of sequential linear programming, which can accommodate a certain level of nonlinearity between decision vari-
ables and constraints, the model linearization and simplex algorithm are repeated with the updated values of the 
decision variables until convergence.

The applicability of PESTPP-OPT was justified since the management objective function was a linear combi-
nation of pumping rates (Equation 7) and a nearly linear relation was found between parameters and ζ1% values 
(using the JACTEST utility of PEST; Doherty,  2004) and between pumping rates and ζ1% values (Figure 5). 
Also, starting the optimization from different initial pumping rates yielded the same results, indicating that 
PESTPP-OPT was effective in finding the global optimum. SLP was implemented since optimization results 
were slightly improved after the first optimization iteration and because it was numerically efficient. The imple-
mentation of PESTPP-OPT was straightforward after having already used a member of the PEST suite to conduct 
parameter estimation (Section 3.1). Only a few modifications were required to the PEST++ control file and all 
file processing was handled in Python using the PyEMU library (White et al., 2016).

3.3.3. Optimization Under Uncertainty

Uncertainty in model parameters (aleatory uncertainty) and in observations used to condition these parame-
ters (measurement noise) results in constraint uncertainty. PESTPP-OPT can account for the impact of these 
uncertainties on optimization results (White et al., 2018). In its FOSM-based chance-constrained programming, 
constraint standard deviations (σcons) are evaluated using FOSM (first-order, second-moment) analysis. The opti-
mization problem is then solved using the constraint values shifted by the product of σcons and the probit func-
tion (i.e., the inverse of the cumulative distribution function associated with the standard normal distribution) 
corresponding to the desired reliability level (Wagner & Gorelick, 1987). Using the terminology from Bear and 
Cheng (2010), we refer to PESTPP-OPT's “risk” values as reliability levels (reliability = 100 · “risk”). These 
represent the probability that the constraints are truly satisfied, considering their uncertainty.
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The optimizations were run with the posterior parameter set and posterior ζ1% standard deviations. In the imple-
mentation of FOSM-based chance constraints, the 58 parameters adjusted during calibration (Table 1) and param-
eters M and αL (Table 2) were considered to be uncertain, as well as the 162 observations in the calibration data 
set. As a result of the FOSM analysis, all uncertainties were assumed to be Gaussian. The optimization problem 
was solved repeatedly for a series of 23 reliability levels between 1% and 98%. The reliability level (R) represents 
the probability of having no well salinization at the end of an optimization (success) and 100 – R represents the 
probability of well salinization (failure). The latter will be referred to as risk of well salinization. A risk-neutral 
optimization was represented by a 50% reliability level (Figure 6b), while different degrees of risk aversion and 
tolerance were explored by using higher (Figure 6a) and lower (Figure 6c) reliability levels, respectively. Chance 
constraints were recalculated at every SLP iteration, since the sensitivity of constraints to parameters could vary 

Figure 5. Approximately linear relation between the model-derived constraint ζ1% (the 1% seawater salinity contour) and 
decision variable values (the individual pumping rates).

Figure 6. Probability densities associated with the steady-state elevation of the 1% seawater salinity contour (ζ1%), after (a) 
risk-averse, (b) risk-neutral, and (c) risk-tolerant optimizations (modified from White et al., 2018). Panels (a–c) represent 
reliability levels of 95%, 50% and 5%, respectively, corresponding to respective risks of well salinization of 5%, 50%, and 
95%. The red line indicates well bottom elevation (zbotm).
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slightly with decision variable values (indicative of model nonlinearities). As a side analysis, the optimizations 
were also run once with the posterior parameter set and with prior ζ1% standard deviations, to examine the tradeoff 
between pumping and risk that would have been obtained if no observations had been available to condition 
parameter estimation.

4. Results
Solving the optimization problem for the 23 risk values required approximately 5,900 model simulations (233 
and 310 simulations for non-risk-neutral optimizations with convergence at 3 and 4 SLP iterations, respectively). 
Using 72 cores at 2.3 GHz, this process took 37.5 hr. The results of optimization under uncertainty were explored 
by analyzing curves of the maximum pumping in the well field (i.e., the management objective function), maxi-
mum pumping rates at individual wells (i.e., the decision variables), and ζ1% values (i.e., the constraints) versus 
reliability.

4.1. Total Pumping in the Well Field

As expected, the total pumping rate in the well field decreased as aversion to risk increased (Figure  7, blue 
curve) and the tradeoff between the total pumping rate and risk could be quantified. For example, reducing the 
risk of salinization from 50% (risk-neutral scenario) to 5% (highly risk-averse scenario) required a 115 m 3/day 
decrease in total pumping. For all risk stances, the total pumping in the well field remained far above the current 
water demand, estimated at 110 m 3/day. Overall, the total pumping rates were of the same order of magnitude 
as the maximum pumping rate currently allowed in the well field, obtained from advective-dispersive-based VD 
models. The optimization problem was infeasible for a reliability level of 99%.

Running the optimizations using prior ζ1% standard deviations (Figure 7, orange curve) resulted in a much steeper 
curve of total pumping versus reliability. For example, reducing the risk of well salinization from 50% to 45% 
required a 116 m 3/day decrease in pumping with prior ζ1% uncertainties, but only a 10 m 3/day decrease in pump-
ing with posterior ζ1% uncertainties. This steeper curve can be explained by the fact that prior ζ1% constraint 
uncertainties were much higher than posterior ζ1% constraint uncertainties (on average 43 and 5 m, respectively). 
When using prior ζ1% uncertainties, the lowest risk of well salinization that could be achieved was 44%, for a total 
pumping rate of 84 m 3/day, since the optimization became infeasible for reliability levels above 56%. In compari-
son, when using posterior ζ1% uncertainties, the lowest risk of well salinization that could be achieved was 2%, for 

Figure 7. Total pumping rate in the well field versus reliability level (bottom axis) or risk of well salinization (top axis), for 
optimizations conducted using prior ζ1% (constraint) uncertainty (orange curve) or posterior ζ1% uncertainty (blue curve). The 
current maximum allowable pumping in the well field and current water demand are shown, as well as risk-tolerant, neutral, 
and averse areas.
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a pumping rate of 231 m 3/day. The probability densities associated with the 
ζ1% values at the end of these optimizations are shown Figure 8.

4.2. Pumping Rates at Individual Wells

Individual pumping rates decreased as aversion to risk increased (Figure 9), 
and the allocation of the total pumping amongst individual wells was obtained 
for each reliability level. The tradeoff between pumping and risk could be 
quantified for any well. For instance, if a pumping scenario with a 95% reli-
ability was selected, then increasing the pumping rate by 10 m 3/day would 
increase the risk of salinization by 15% at well no. 1 (blue curve) versus 85% 
at well no. 4 (near-horizontal red curve). Also, achieving highly risk-averse 
stances required reducing the pumping rate in well no. 7 to close to zero. 
Overall, the individual pumping rates were on the same order of magnitude 
as those currently applied in the field, but with different allocations.

As aversion to risk increased, under each pumping well, progressively more 
of the probability distribution of ζ1% was located below the well bottom 
elevation at the new steady state (Figure 10). In parallel, the interface simu-
lated by SWI2 (ζcell, Equation  4) approached its initial elevation and the 
transition zone width decreased. For the high pumping rates applied at low 
reliability levels, while simulated ζcell values remained well below sea level, 
the ζ1% values obtained through postprocessing could have portions of their 
probability distribution (or even their mean value) located above sea level, 
which is a limitation of the postprocessing approach. However, adopting such 

risk-tolerant stances is not advisable. Finally, the computed values for the ζ1% uncertainty varied between opti-
mizations (Figure 10), which could be attributed to model nonlinearity. These variations increased in magnitude 
when conducting optimization using the higher, prior ζ1% uncertainties, which was responsible for the irregular 
aspect of the total pumping versus risk curve (Figure 7, orange curve). The steady-state freshwater lens obtained 
with the optimized pumping rates was analyzed using maps and cross-sections. In the study area, higher pumping 
rates generated more significant upconing but also a contraction of the lens farther away from the pumping wells 
(Figure 11).

Figure 8. Prior and posterior constraint uncertainty associated with the 
1% seawater salinity contour (ζ1%) under well no. 6, for the lowest-risk 
optimization that was achievable in each case (44% and 2% risks of well 
salinization, respectively).

Figure 9. Pumping rates at individual wells (Qi) versus reliability level (bottom axis) or risk of well salinization (top axis). 
The maximum allowable pumping rates currently implemented at each well are represented by crosses.
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5. Discussion
5.1. Pumping Optimization Under Uncertainty

Comparing the maximum allowable pumping rate for different risk stances to the water demand allowed for 
an examination of the capacity of the well field to satisfy demand while maintaining low levels of risk. In the 
study area, the well network had the capacity to satisfy the water demand even for the most risk-averse stances 
(Figure 7). Adopting a highly risk-averse pumping scenario, which was strongly advisable given the consequences 
of well salinization (Section 3.2.1), was therefore straightforward. Had the water demand intersected the curve in 
Figure 7, managers could choose to satisfy the water demand at a higher risk of well salinization, or to maintain 
a low level of risk in the current well network but find supplementary sources of water. Describing not only the 
probability of well salinization but its consequences, in terms of cost or multiple criteria (e.g., broader economic, 
societal, environmental impacts) could further support decision-making in these cases. Instead of presenting 

Figure 10. Elevation of the 1% seawater salinity contour (ζ1%) and its 95% confidence interval versus reliability level, at well 
no. 6. The elevation of the interface simulated by SWI2 is shown (ζcell), with the well bottom elevation (zbotm) and initial ζ1% 
and ζcell values. PESTPP-OPT does not compute constraint uncertainty for risk-neutral optimizations.

Figure 11. Cross-section of the freshwater lens, delimited by the freshwater head (h) and the 50% seawater salinity contour 
(ζ50%), at steady state without pumping and with optimized pumping rates obtained with reliability levels of 98% and 1%. The 
location of the transect is shown Figure 2. The elevation of the steady-state 1% seawater salinity contour (ζ1%) is calculated at 
pumping well locations. ζ1% is only equal to well bottom elevation for a reliability level of 50%.
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water managers with a unique, final pumping scenario, they are encouraged to choose the final scenario them-
selves depending on their desired reliability level, or tolerated risk of failure. This is a strong advantage in terms 
of decision-support, since direct involvement in the decision-making process can lead to a higher adherence. The 
optimizations further determined how pumping should be allocated within the well field. Analyzing how individ-
ual pumping rates varied as a function of risk helped identify at which wells the pumping rate could be increased 
while maintaining a low risk of salinization, versus wells that were more vulnerable to salinization (e.g., wells 
no. 1 and 4, respectively, Figure 9).

After parameter estimation, during which constraint uncertainty was significantly reduced, the cost of reduc-
ing risk was smaller (i.e., reducing the risk of well salinization could be achieved for smaller reductions in the 
total pumping rate). Optimal pumping scenarios could also be determined for lower levels of risk (Figure 7). 
Conducting parameter estimation was therefore essential to improve the results of pumping optimization under 
uncertainty. It should be noted that the constraint uncertainty decreased significantly because the observations in 
the calibration data set contained substantial information related to the parameters influencing the ζ1% constraint 
values (Coulon et al., 2021). The results of pumping optimization under uncertainty using the higher constraint 
uncertainties were affected by higher model nonlinearity, which should be further explored.

5.2. Sharp-Interface Approach for Upconing Problems

The limitations of SI numerical upconing remain largely unexplored. Bakker et  al.  (2013) found that SWI2 
yielded similar results to SEAWAT for a transient upconing simulation, and Reilly and Goodman (1987) found 
that their steady-state SI numerical model yielded results similar to the advective-dispersive-based SUTRA 
model (Voss, 1984) for pumping rates below a maximum permissible discharge calculated from sharp-interface 
theory. During saltwater upconing, the salt concentration distribution is a result of hydraulically-driven (i.e., 
forced) convection, where pumping-induced head gradients lead to a convergence of flowlines from different 
depths and salinities to the well (de Louw et al., 2013), density-driven (i.e., free) convection, and hydrodynamic 
dispersion (Jakovovic et al., 2011; Simmons et al., 2001). Three-dimensional advective-dispersive transport takes 
place along all flowlines converging to the well, including those from above and below the interface. SWI2 cannot 
fully reproduce forced vertical or free convection, since it adopts the Dupuit approximation in each zone of differ-
ing density (and a single model layer was used to discretize the aquifer – Section 3.1) and it does not account for 
hydrodynamic dispersion (Bakker et al., 2013). Considering the high hydraulic conductivity of the aquifer and 
the low pumping rates (resulting in a maximum drawdown of 0.8 m in the most risk-tolerant scenarios), flow to 
the well was expected to remain dominantly horizontal, that is, with few flowlines originating from the deeper 
saltwater zone and crossing salinity contours, therefore the SI approach was considered a reasonable compromise 
between accuracy and computational effort. However, this approach might not be suitable to simulate upconing in 
cases with a significant vertical flow component, for example, for high pumping rates or low hydraulic conductiv-
ities (de Louw et al., 2013). Comparing SWI2 and an advective-dispersive-based VD model under a wide range of 
aquifer conditions and well parameters would be of interest, to identify specific limitations of the SWI2 package.

The limitations of the analytical correction for dispersion (Equation 5), used in combination with SWI2, should 
also be explored. Although it accounts for longitudinal dispersion, which dominates mixing in the transition zone 
during transient phases of upconing (Jakovovic et al., 2011), the correction neglects transverse dispersion, which 
dominates mixing in steady-state conditions (Reilly & Goodman, 1987). It also assumes a homogeneous domain, 
although small-scale variability in aquifer properties can significantly impact solute transport (Sudicky, 1986). 
When superimposing this solution to analytical SI equations and comparing the results with the SEAWAT model, 
Pauw et al. (2016) found the approach was limited for high pumping rates causing significant upconing, or for 
wide initial mixing zones. The ζ1% values obtained through this approach depended on αL and M values, which are 
uninformed by the interface observations used in parameter estimation. The ζ1% values were particularly sensitive 
to αL, and Jiao and Post (2019) suggest that determining αL as a function of solute transport scale may not always 
apply to regional coastal groundwater models (αL values on the order of a few meters seem most appropriate).

With a SI approach, well salinization could only be defined indirectly, whereas in advective-dispersive-based VD 
models, pumped water salinity can be directly used. Not only did this add conceptual uncertainty to the approach, 
but comparison of model predictions and observations is more complicated since only a documented well salin-
ization event could be used to verify or update the predictions. The well salinization definition used in this study 
(Section 3.2.1) was more conservative than the saltwater ratio of 0.001 used by Babu et al. (2018), since it was 
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expected that the salinity of pumped water would increase before the 50% seawater salinity contour reached the 
well. It was also more conservative than the critical interface rise used by Luedeling et al. (2015), since the rise 
of the SWI2 interface under pumping wells was always less than 40–60% of the original distance from the well 
bottom (Figure 10). It was also less than the 2.4% seawater salinity contour used by Pauw et al. (2016), which was 
based on the drinking water standard for total dissolved solids. Comparing optimization results obtained in an 
upconing context, using both a SI and an advective-dispersive-based VD approach, would be of interest (similar 
to the comparison by Kopsiaftis et al. (2019) in a lateral seawater intrusion context).

The optimization under uncertainty neglected several sources of uncertainty, including conceptual (or structural) 
uncertainty, and scenario uncertainty, that is, the uncertainty in future system stresses. In particular, using a SI 
approach was a major simplification of mixing processes which could result in high conceptual uncertainty as 
well as biased ζ1% values. The model pairing methodology developed by Doherty and Christensen (2011) could 
be used to detect and correct the SI model's predictive biases and to quantify its predictive uncertainty, through 
pairing with an advective-dispersive-based VD model.

Although the SI numerical model faced the above-mentioned challenges, its fast simulation times and numerical 
stability facilitated a rigorous analysis of parameter estimation and pumping optimization under uncertainty. A 
total of almost 8,000 simulations were run in less than 50 hr (using parallelized model simulations), which is a 
very low computational burden compared to advective-dispersive-based VD models. Furthermore, all numerical 
simulations of physical processes face specific challenges, including advective-dispersive-based VD models. For 
instance, the accurate representation of mixing processes requires input data such as effective molecular diffusion 
coefficients, which can be highly uncertain (Jiao & Post, 2019), and the inability to conduct parameter estimation 
due to long simulation times results in high parametric uncertainty and limits uncertainty quantification alto-
gether. Simulation results may also be biased by numerical dispersion (Gatto et al., 2021; Konikow, 2011; Woods 
et al., 2003). The computational complexity of these models generally requires the use of surrogate models to 
conduct optimization, which further increases predictive uncertainty (Ketabchi & Ataie-Ashtiani, 2015).

5.3. Other Limitations

The difference between upconing simulated at the cell and upconing under the well will be non-negligible when 
cell sizes are of the same order of magnitude as the radius of influence of the wells (Panday et al., 1993). While 
corrections for cell-to-well drawdown were extensively studied and are easily implemented using the MNW2 
package (Konikow et  al.,  2009), corrections for cell-to-well upconing seem unexplored and Equation  4 was 
used as a first approximation. This correction was required because MODFLOW-2005 does not have local mesh 
refinement options, and implementing gradational global mesh refinement near pumping wells produced elon-
gated cells in which numerical instabilities developed with the SWI2 package. Using this correction increased 
the ζ1% conceptual uncertainty. It also introduced a dependence of the ζ1% values on the hwell values computed 
by MNW2, and thus calculation of hwell will vary with the implemented type of head-loss correction (Konikow 
et al., 2009).

The optimization was conducted under steady-state conditions because the storage parameters were unconstrained 
by the steady-state calibration, and therefore remained highly uncertain (Coulon et al., 2021). These parameters 
have no influence on steady-state ζ1% uncertainties, but would likely be significant sources of uncertainty for 
transient ζ1% values. However, for constant boundary conditions, the maximum upconing will occur at the new 
system equilibrium while in a real-life system with varying stresses, the maximum upconing could occur before 
the new steady state. Working in a transient framework would allow for the evaluation of the rate of change of the 
system in response to the pumping scenarios, which may be of interest to decision-makers.

6. Conclusion
Conducting pumping optimization under uncertainty for different reliability levels yielded the maximum amount 
of freshwater that could be extracted by the well field as a function of risk of well salinization. This allowed for 
the quantification of the tradeoff between total pumping and risk, and for determination of the ability (or inabil-
ity) of the well field to meet the water demand while maintaining an acceptable risk of well salinization. The 
approach also yielded the maximum pumping rates at individual wells, or the allocation of total pumping amongst 
wells, as a function of risk. This enabled an exploration of which wells could see their pumping rates increased 
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while maintaining an acceptable risk of salinization. Finally, conducting parameter estimation was found to be 
beneficial, since reduced constraint uncertainties enabled the identification of pumping scenarios with low risks 
of salinization, and achieved reductions in risk for smaller reductions in pumping. Overall, the methodology 
provides groundwater managers with multiple insights for groundwater pumping management, while leaving 
them with the final decision of which pumping scenario to adopt, depending on their degree of tolerance or 
averseness toward risk.

This methodology can be applied to freshwater lenses in other island aquifers, to determine a first-order approx-
imation of sustainable yields considering uncertainty. The method for pumping optimization under uncertainty 
could also be adapted to continental coastal aquifers exposed to lateral seawater intrusion, where the definition 
of well salinization would differ (e.g., based on the location of the “toe” of the interface, Mantoglou et al., 2004). 
Remaining questions concern the estimation of conceptual uncertainty and of bias in the outputs of the SI numer-
ical models, and the definition of well salinization. In future work, the uncertainty in climate change and water 
demand scenarios will be considered and integrated into the optimization approach.

Appendix A: Analytical Correction for Dispersion
The application of the analytical correction for dispersion to the MODFLOW-SWI2 model is briefly summa-
rized. Equation 5 in the main text was derived from Pauw et al. (2016), Equation 6. Upconing under a pumping 
well is considered as a 1D solute transport problem. The hydrodynamic dispersion taking place around the 50% 
seawater salinity contour (i.e., the center of the transition zone), following the displacement of a transition zone 
(with an initial width M) from its initial position, is approximated using the Ogata and Banks (1961) 1D solution 
for advective-dispersive transport. Using this approach, at any given time t, the concentration of any x-percent 
seawater salinity Cx% (kg/m 3) can be calculated using Equation A1:

𝐶𝐶𝑥𝑥%(𝑡𝑡) =
𝐶𝐶s

2
erfc

(
𝜁𝜁𝑥𝑥%(𝑡𝑡) − 𝜁𝜁50%(𝑡𝑡)

2

√
𝑏𝑏𝑏𝑏

2 + 𝛼𝛼L |𝜁𝜁50%(𝑡𝑡) − 𝜁𝜁50% init|

)

 (A1)

where Cs is the seawater salinity (kg/m 3), erfc is the complementary error function, ζx% is the elevation of the x% 
seawater salinity contour (masl), ζ50% and ζ50% init are the elevations of the 50% seawater salinity contours (i.e., the 
advective front) at time t and the initial state, respectively (masl), αL is the longitudinal dispersivity (m), M is the 
initial width of the transition zone (m), defined as the 95% confidence interval around the 50% seawater salinity 
contour (i.e., ± 2 standard deviations). This 95% confidence interval corresponds to the difference between the 
2.4% and 98% seawater salinity contours (ζ2.4% and ζ98%, respectively), or twice the difference between the 2.4% 
and the 50% seawater salinity contours, assuming a Gaussian distribution of concentrations:

𝑀𝑀 = 𝜁𝜁2.4% − 𝜁𝜁98% = 2 (𝜁𝜁2.4% − 𝜁𝜁50%) (A2)

In Equation A1, b is a constant whose formulation depends on the definition of the transition zone width M (Pauw 
et al., 2016, Equation S14). For a transition zone width defined as in Equation A2, b is:
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 (A3)

where C2.4% is the concentration corresponding to 2.4% seawater (i.e., 0.024 · Cs). Equation A3 corresponds to 
Equation 6 in the main text.

Equation A1 corresponds to a rearranged form of Pauw et al. (2016), Equation S16, in which Equation S15 was 
inserted. For an initially null transition zone width (M = 0), Equation A1 is similar to the original Ogata and 
Banks (1961) solution, while for an initially non-null transition zone width, the term b M 2 represents the “width of 
the mixing zone in the form of the equivalent traveled distance of the interface” (Pauw et al., 2016). Equation A1 
is similar to Equation 16 of Schmorak and Mercado (1969), who defined the width of the transition zone as the 
68% confidence interval around the 50% seawater salinity contour (i.e., ±1 standard deviation). As shown in 
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Equation A1, the concentration distribution in the transition zone depends on the total distance traveled by the 
50% seawater salinity contour from its initial position, independent of direction (|ζ50% – ζ50% init|).

The sharp interface simulated by MODFLOW-SWI2, ζSWI2, corresponds to the elevation of the 50% seawater 
salinity contour (masl). Therefore, rewriting ζ50% as ζSWI2, and rearranging Equation A1, the elevation of any 
x-percent seawater salinity contour ζx% (masl) can be calculated at any time t using:

𝜁𝜁𝑥𝑥%(𝑡𝑡) = 𝜁𝜁SWI2(𝑡𝑡) + 2

√
𝑏𝑏𝑏𝑏

2 + 𝛼𝛼L|𝜁𝜁SWI2(𝑡𝑡) − 𝜁𝜁SWI2 init| erfc
−1

(
2
𝐶𝐶𝑥𝑥%

𝐶𝐶s

)
 (A4)

Equation A4 is similar to Equation S16 of Pauw et al. (2016). Equation 5 in the main text corresponds to Equa-
tion A4 applied to the 1% seawater salinity contour.

Data Availability Statement
Version 1.12.00 of MODFLOW-2005, used for simulations of groundwater flow, is available at https://www.
usgs.gov/software/modflow-2005-usgs-three-dimensional-finite-difference-ground-water-model. The PEST_HP 
software used for parameter estimation is available at https://pesthomepage.org/programs (version 16.11 was 
used). The PESTPP-OPT software used for pumping optimization is available at https://www.usgs.gov/software/
pest-software-suite-parameter-estimation-uncertainty-analysis-management-optimization-and (version 5.1.2 
was used, the source code is available on https://github.com/usgs/pestpp). The files associated with the param-
eter estimation are available as part of the Supplementary data of Coulon et al.  (2021), they are available on 
GitHub at https://github.com/Cecile-A-C/swi2-magdalen-islands and are archived at https://doi.org/10.5281/
zenodo.6774214 (version v1.0.0, MIT license). The input and output files of the pumping optimizations, and the 
Python scripts used for postprocessing output files and for generating figures, are available on GitHub at https://
github.com/Cecile-A-C/swi2-optimization and are archived at https://doi.org/10.5281/zenodo.6458507 (version 
v1.0.0, MIT license).
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