
Available online at www.sciencedirect.com
www.elsevier.com/locate/advwatres

Advances in Water Resources 31 (2008) 399–417
Computationally efficient stochastic optimization using
multiple realizations

P. Bayer *, C.M. Bürger, M. Finkel

Center for Applied Geosciences, University of Tübingen, Sigwartstrasse 10, D-72076 Tübingen, Germany

Received 21 May 2007; received in revised form 25 September 2007; accepted 25 September 2007
Available online 1 October 2007
Abstract

The presented study is concerned with computationally efficient methods for solving stochastic optimization problems involving
multiple equally probable realizations of uncertain parameters. A new and straightforward technique is introduced that is based on
dynamically ordering the stack of realizations during the search procedure. The rationale is that a small number of critical real-
izations govern the output of a reliability-based objective function. By utilizing a problem, which is typical to designing a water
supply well field, several variants of this ‘‘stack ordering’’ approach are tested. The results are statistically assessed, in terms of
optimality and nominal reliability. This study demonstrates that the simple ordering of a given number of 500 realizations while
applying an evolutionary search algorithm can save about half of the model runs without compromising the optimization proce-
dure. More advanced variants of stack ordering can, if properly configured, save up to more than 97% of the computational effort
that would be required if the entire number of realizations were considered. The findings herein are promising for similar problems
of water management and reliability-based design in general, and particularly for non-convex problems that require heuristic search
techniques.
� 2007 Elsevier Ltd. All rights reserved.

Keywords: Stochastic optimization; Reliability-based design; Wellhead protection; Evolutionary algorithms; CMA-ES
1. Introduction

The use of multiple, equally probable realizations of an
uncertain parameter set, instead of relying exclusively on
one deterministic characterization, is a common method
of accounting for the incomplete knowledge in model input
parameter values (e.g., [11]). If flow or transport models are
applied in the decision making process for groundwater
management, proactive and post-mortem procedures
involving multiple realizations can be distinguished (e.g.,
[38]). Solving a management problem in a proactive way
means that probability distributions are processed in the
objective function (OF). Here, the OF to be optimized rep-
0309-1708/$ - see front matter � 2007 Elsevier Ltd. All rights reserved.

doi:10.1016/j.advwatres.2007.09.004

* Corresponding author.
E-mail addresses: peter.bayer@uni-tuebingen.de (P. Bayer), claudius.

buerger@uni-tuebingen.de (C.M. Bürger), michael.finkel@uni-tuebingen.
de (M. Finkel).
resents a combination of the results simultaneously
obtained for numerous realizations. Post-mortem tech-
niques, such as sensitivity analyses, examine one or more
solutions found by applying a deterministic model first
(e.g., [36,6]). Then, the susceptibility of these solutions to
model inaccuracies is examined by assuming statistically
distributed parameters, for example by Monte Carlo anal-
ysis. In this way, highly influential model parameters are
identified.

In this paper, we will focus on the proactive concept of
reliability-based optimization (RBO) as it is suited to con-
dition solutions a priori for being insusceptible to parame-
ter uncertainty. The purpose of RBO is the identification of
one design which is suited to all realizations simulta-
neously. For example, specific OF values are computed
for each realization and then their mean or the worst value
is optimized. Formally, one OF evaluation requires sequen-
tial/parallel runs of the model for the entire stack of

mailto:peter.bayer@uni-tuebingen.de
mailto:claudius. buerger@uni-tuebingen.de
mailto:claudius. buerger@uni-tuebingen.de
mailto:michael.finkel@uni-tuebingen. de
mailto:michael.finkel@uni-tuebingen. de

NOTATION

A penalty variable for drawdown
B penalty variable for groundwater residence time
C* criterion for determination of sampling proba-

bility
CMA-ES evolution strategy with covariance matrix

adaptation
Cr credit of realization r

dact,r drawdown violation at extraction well locations
of a realization (m)

dmax maximum drawdown violation (m)
dr relative drawdown violation for realization r

f iteration threshold for SORed
F number of realizations indicating failure
GA genetic algorithm
i row coordinate of well, within ranges of imin

< i < imax

j column coordinate of well, within ranges of
jmin < j < jmax

k decay factor
n problem dimension
NO no ordering of realizations
NORep no ordering of realizations with replacement
OF objective function, OFr is objective function

evaluated for realization r

OR optimization run
pen penalty
pr sampling probability for realizations in SORed,

SORep and SORepDecay

q extraction rate (l/s), within ranges of
qmin < q < qmax

r realization index
RBO reliability-based optimization
RN nominal reliability
hRi true reliability
S stack size
Seval size of evaluation stack
SO stack ordering (and break)
SORed stack ordering and reduction
SORep stack ordering with replacement
SORepDecay stack ordering with replacement and de-

cay
sr position of realization r in sorted stack
t iterations of optimization algorithm (successive

OF evaluations), t = 1, . . ., tmax

zact,r residence time violation at wells of a realization
(d)

zmin minimum residence time violation (d)
zr relative residence time violation for realization r

X design constraint for groundwater management
problem

k size of population (CMA-ES)
l size of offspring (CMA-ES)
r2

Y variance of log hydraulic conductivity

400 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
realizations. Reliable solutions are those which comply
with the constraints of all realizations. In contrast, robust
designs are those that are least sensitive to the expected
uncertainty of input parameters. Despite the apparent
computational intensity of a multiple realizations based
optimization procedure, it is appealing due to its potential
to deliver robust or reliable solutions, its straightforward-
ness and flexibility. The potential of this approach has been
demonstrated in various applications for RBO in the field
of groundwater management [47,43,37,17,3], as well as in
other disciplines related to reservoir management, reliabil-
ity-based engineering and structural safety [16,42].

This study proposes computationally efficient methods
of achieving optimal solutions for a design problem involv-
ing multiple realizations. The purpose is to maximize both
solution reliability and search efficiency under the assump-
tion that a given stack of realizations exists that adequately
represents the possible space of parameter uncertainty or
imprecision. We will present a new procedure, ‘‘stack
ordering’’, which is based on dynamically ordering realiza-
tions during the optimization process. Several variants of
the method will be introduced and tested for their capabil-
ity to optimally configure a water supply well field under
uncertain heterogeneous aquifer conditions.
2. Stochastic optimization in groundwater management:

related work

2.1. Stacking method

A major source of uncertainty in groundwater manage-
ment is the spatial distribution of hydraulic conductivity.
Commonly, only a small fraction of an aquifer is sampled.
If point measurements are available, calibrating a model
means interpolating between these points of known param-
eters by estimating the missing unknown hydraulic conduc-
tivity of the sampled features. The various possibilities of
interpolation can be reflected by multiple, equally probable
realizations of the hydraulic conductivity distributions
stacking method, [47]. An optimal control solution is then
assessed according to its performance under various prob-
able hydraulic conditions, which are represented by the
realizations.

If hydraulic conductivity is sampled from its distribution
curve, an infinite number of realizations are necessary in
order to obtain an exact representation of the probability
space. Therefore, multiple-realization based optimization
demands a compromise between desired accuracy and com-
putational feasibility. At the same time, even if it were pos-

Stack

1
2 3

all possible realizations

true reliability

nominal
reliability

subsets
for OF

evaluation ...

Fig. 1. Definition of true and nominal reliability. A stack of realizations is
a representative set of realizations. For reliability-based objective function
evaluation, the stack can be considered as a whole, or in small subsets
(=evaluation stack).

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 401
sible to reach maximum accuracy in describing parameter
uncertainty, there are numerous other factors encroaching
upon the preciseness of model predictions. A main factor
here is that groundwater models will always be abstract
representations of reality with specific conceptual short-
comings. A second important factor is an inherent degree
of imprecision in the measurements. Compared with
parameter uncertainty, conceptual and measurement
imprecision appears to be extremely hard to quantitatively
describe. This is reflected in the relatively few studies ded-
icated to those issues other than the consequence of model
parameter uncertainty (e.g., [35,25,29]).

In view of the variable sources of model inaccuracies,
the multiple realization concept is appealing as several dif-
ferent factors causing model inaccuracy may be considered
in a straightforward manner. This may be seen as one
major advantage over approximate analytic approaches,
which merely address parameter uncertainties such as
first-order or second-order reliability methods (e.g.,
[30,14,27,2]).

Although the resolution of expected parameter spaces
(and their representation of reality) is limited by the com-
putational feasibility, a satisfactory exactness of model out-
puts may already be achieved by a small stack of
realizations. This was shown by Chan [13] who derived
two statistical models based on Bayesian analysis as well
as on order statistics to estimate the reliability of hydraulic
management problem solutions. If S is the number of real-
izations of multiple random hydraulic conductivity fields,
i.e., the stack size, the expected true reliability hRi of a
solution which satisfies the constraints of all realizations
is S/(S + 1) or (S + 1)/(S + 2), respectively. Based on a
comprehensive empirical analysis, Feyen and Gorelick
[17] revealed deficiencies in these formulas, particularly in
overestimating reliability with small stack sizes, which
was already indicated in test series by Chan [13].

Feyen and Gorelick [17] suggested an alternative formu-
lation, which incorporates the variance of log hydraulic
conductivity, r2

Y, in case of 2D Gaussian distributed ran-
dom fields: hRi ¼ ðS � 0:5Þ=½S þ 2ðr2

Y þ 1Þ�. Although only
demonstrated for the particular case examined, specifically,
a water supply problem in a hydroecologically sensitive
area, there is clear evidence of the transferability of these
findings to other similar cases. A high true reliability may
be assigned to solutions found for a rather small number
of realizations. For example, for solutions complying with
the constraints of a stack size of 100, the approximation of
Feyen and Gorelick [17] computes expected true reliabili-
ties hRi of over 95% under moderate aquifer heterogeneity
ðr2

Y ¼ 1Þ.
For the further demonstration, we use the term ‘‘nomi-

nal reliability’’ RN (cp., [46]), which only states the reliabil-
ity that is measured for the stack considered. A nominal
reliability of RN = 100% means that a solution complies
with the constraints of all S realizations of the stack. Lower
values denote solutions that fail in a certain fraction F of
realizations, so that the nominal reliability is expressed
by RN = (S � F)/S. As shown by Feyen and Gorelick
[17], if the stack size is sufficiently large, the nominal reli-
ability is usually very close to the true reliability. In this
work, reliability estimates for a large stack of 500 realiza-
tions are supposed to be representative approximations
of the true reliability. The latter may be determined or
approximated by a post-optimization Monte Carlo analy-
sis of optimal solutions found using a larger stack, i.e., with
a huge number of realizations (e.g., [47]). Alternatively, the
nominal reliability of a solution may be calculated repeat-
edly for increasing stack size until it converges to the true
reliability (see Fig. 1).

2.2. Optimization procedures

A typical optimal control problem in groundwater man-
agement is the adaptation of wells for contaminated site
clean-up or water supply. Particularly when considering
well placement in heterogeneous aquifers, the related OFs
are commonly non-linear and non-convex, exhibiting vari-
ous local optima [49,4]. Heuristics, such as evolutionary
algorithms, prove particularly suitable for solving such
demanding problems. However, if the complexity of such
problems is maintained at a low level, then classical gradi-
ent optimization techniques can be an efficient alternative
(e.g., [43,46,17]).

Evolutionary algorithms minimize the risk of getting
stuck in potentially existing local optima at the expense
of a commonly significant number of iterative OF evalua-
tions. Since each individual OF evaluation processes the
results of a groundwater model, the number of iterations
must be, as far as possible, reduced to obtain optimized
solutions within a reasonable time. For stochastic optimi-
zation with multiple realizations, this is even more signifi-
cant since each OF evaluation requires multiple model
runs according to the size of the stack of realizations. Con-
sequently, computational time can be reduced by either
decreasing the number of OF evaluations, or by minimiz-
ing the number of model calls per OF evaluation.

402 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
An evolutionary algorithm, evolution strategies with
covariance matrix adaptation (CMA-ES; [22,23]), was
selected due to its proven good performance in well optimi-
zation problems (e.g., [4]). An appealing feature is the gen-
eral applicability of this kind of algorithm. CMA-ES is
especially suited to multi-modal, complex problems and
is regarded to be rather insensitive to noise compared to
gradient-based or direct search methods. In [4,5], we imple-
mented this algorithm for solving a moving well problem
for hydraulic containment of a contaminated aquifer zone.
Both pumping rates and well positions are selected as deci-
sion variables. For the water supply problem in this study,
an equivalent moving well formulation was used.

In general, evolutionary algorithms encompass a family
of generation-based optimization procedures, which are
inspired by biological evolution. Accordingly, a specific
genetic terminology is used that describes the partly sto-
chastic procedures and operators. For groundwater man-
agement optimization, the variants of genetic algorithms
(GAs) and evolution strategies have been applied in vari-
ous studies (e.g., [49,48,28]). Both have a generation-based
concept in common, that is, instead of evaluating the OF of
single solutions iteration by iteration, a set (the generation)
of potential solutions is considered simultaneously. The
first generation may be initialized randomly or determinis-
tically by selecting a number (i.e., population size) of object
parameter combinations (i.e., candidate solutions or search
points, the individuals) from the decision space. For each
individual, the OF (the fitness) is calculated separately.
Then, the individuals of a population are evaluated to pro-
duce the next generation (the offspring). The fitness (opti-
mality) determines the possibility that an individual is
selected to survive, i.e., to be part of the mating pool from
which the next generation is produced (selection).

Selection means preserving good individuals or, more
generally, the information they carry. Thus it is the essen-
tial step in converging to an optimal solution. In the next
step, two typical operators are introduced to create the next
generation: recombination and mutation. The former is
employed to combine the information of different selected
individuals. The latter involves a probabilistic change of
the selected individuals or their combinations. After creat-
ing a new generation of same size, this procedure is
repeated until a certain termination criterion (conver-
gence), such as fitness threshold or maximum generation
number, is reached.

Compared with the very popular binary GA (e.g., [19]),
CMA-ES is a recent and less-known variant of evolution-
ary algorithms. Without going into the details, we would
like to outline the main features of both algorithms. While
in binary GA variants the individuals are represented by
chromosomes (binary bit strings), CMA-ES uses real-value
representations of the individuals. Selection and subse-
quent recombination are commonly probabilistic in GAs
but deterministic in CMA-ES. Consequently, in GAs,
higher quality individuals have higher probabilities to sur-
vive from one generation to the next. This may even be
enforced by elitism, which involves deterministically select-
ing one or more superior individual from one generation
for the next one, without any alteration. CMA-ES uses
non-elitist (l, k)-selection, that is, the best l of k individu-
als per generation exclusively form the mating pool. A
main difference between the two algorithms is the popula-
tion size (i.e. k), which has to be set specific to each prob-
lem. A preliminary testing of different population sizes is
recommended for ideal GA configuration (e.g., [41]),
whereas CMA-ES works well with k = 4 + b3 ln nc and
l = bk/2c [22]. Parameter n denotes the dimension of the
problem, that is, the number of decision variables. In many
cases, however, binary GAs behave similarly in converging
to an optimum for a broad range of population sizes and
these are empirically configured (e.g., [1,4,12]).

Stack ordering adopts a suggestion made in previous
studies which deal with GAs for reliability-based design
involving multiple realizations [10,44]. The idea is to select
only a subset of the stack of realizations during each of the
iterations of the optimization algorithm (Fig. 1). This
means that a stack of sufficient size is considered through-
out the optimization, but only a small number of realiza-
tions is sampled for computing the OF value of an
individual. Considering the remainder, we will call the
entire realization pool ‘‘repository stack’’ and the subset
utilized for OF evaluation, ‘‘evaluation stack’’. Although
computational time is generally saved by utilizing an eval-
uation stack of small size, accuracy and exactness are com-
promised. This is of central concern, particularly due to the
potential reliability of solutions analyzed only for a small
number of realizations. In fact, in water resource manage-
ment, high reliabilities are desirable, especially for prob-
lems involving the risk of contamination (e.g., [18,44,26]).

Smalley et al. [44] and Gopalakrishnan et al. [21] dem-
onstrate the application of their noisy genetic algorithm
for risk-based bioremediation design. The OF is evaluated
by taking the average results of a small number of (4–15)
realizations (the evaluation stack) that are randomly sam-
pled from the entire stack of realizations. Starting with a
very small sample size, algorithm-specific rules are intro-
duced to increase the evaluation stack in later generations.
Wu et al. [48] apply this approach for optimizing a sam-
pling network design. As the calculated OF value is an
approximation of the true fitness that is governed by the
(average over the) respective realizations that are sampled,
noise is introduced. Obviously, there is no guarantee that
solutions that are valid (not penalized) for the evaluation
stack will yield a nominal reliability of RN = 100% when
being evaluated for the entire stack. However, replacing
the evaluation stack at each generation raises the probabil-
ity that designs which perform well survive, and that unsat-
isfactory variants are discarded. The suitable size of the
evaluation stack and the appropriate configuration of the
noisy GA are derived for a specific problem from a compu-
tationally intense preliminary survey. After the optimiza-
tion procedure is terminated, the entire (repository) stack
is considered for the calculation of nominal reliabilities.

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 403
In their remediation example, the values of RN span a
range between 68% and 98% [21].

Cantoni et al. [10] and Marseguerra et al. [33] present
a similar GA implementation for optimal reliability-based
design of engineering systems. They also examine possi-
ble design configurations by means of evaluation stacks
of reduced size, but introduce a dynamic book-keeping
procedure to enhance the significance of the OF evalua-
tion. They suggest that the accumulation of evaluation
results in an archive, which is continuously updated dur-
ing the optimization procedure. Thus, the OF value of
‘good’ configurations (i.e., individuals that repeatedly
appear in generations) is estimated not only on the basis
of the current evaluation stack, but also on the results of
previous evaluations of different stacks. Using this ‘‘drop-
by-drop’’ approach, statistically more significant results
are obtained for good candidate solutions than for less
fit ones.

Chan Hilton and Culver [12] introduce a so-called
robust genetic algorithm, which only uses evaluation
stack sizes of 1. This means that for each generation,
one realization is exclusively and randomly sampled for
OF evaluation of all individuals. To overcome the signif-
icant noise induced by highly realization-specific results,
the authors suggest manipulating the common selection
scheme in GAs. The focus is placed on those individuals
that are fittest and therefore have a high probability of
survival in the next generations. Instead of only using fit-
ness as a criterion for selection, an empirical scheme
raises the selection probability for individuals according
to the number of generations they have already survived
(their ‘‘age’’). Compared with basic GA implementations,
the preservation of numerous good individuals over sev-
eral generations is of essential importance here. In the
robust GA [12], this is amplified by a large proportion
of elite individuals: only half of the individuals are
replaced at each generation.

In [12], the robust GA is judged against a noisy GA
implementation for the optimization of the well configura-
tion of a pump-and-treat system in aquifers of low and
moderate heterogeneity. The results are obtained for a
stack size of 500 realizations and are revealed as highly var-
iable in the OF values and the post-computed nominal reli-
abilities. In the case of low heterogeneity, nominal
reliabilities of solutions range between 76% and 100%. In
the moderately heterogeneous case, none of the algorithms
provided solutions of more than 80%.

In essence, one can say that noisy or robust GA tech-
niques achieve considerable savings in computation time.
Yet, the question persists as to how to save computation
time and still arrive at highly reliable and (cost-)optimal
configurations. In this study, we will demonstrate that the
reliability of a solution stemming from optimization with
comparatively small evaluation stacks may be maximized
if the focus is on the most ‘‘critical’’ realizations, that is,
those realizations that virtually represent the binding
constraints.
3. Water supply problem formulation

In the particular problem considered in this study, we
adopt the perspective of a decision maker who has to con-
figure both the layout and the protection area of drinking
water supply wells. The optimization problem to be set
up will answer the question: where should one or more
(three, in this case) pumping wells be placed in order to
maximize the benefit (i.e., the total groundwater extraction
rate) while preventing adverse effects? As for adverse
effects, unacceptable depletion of the groundwater table
and potential contamination of extracted fresh water are
considered.

Formally, the maximization of drinking water extrac-
tion from an aquifer is constrained by (i) a strict drawdown
threshold over the entire area that is modeled, and by (ii) a
given target of minimum travel time to the well(s) from an
existing agricultural area located upgradient of the well(s).
The latter constraint is inline with common practice in
countries with agricultural activities, where well protection
areas are delineated with respect to residence time in
groundwater (e.g., [9,45]). In these areas, activities threat-
ening the groundwater body are forbidden. The risk ema-
nating from degradable organic compounds and bacteria
that enter groundwater outside of these areas is minimized
by ensuring a sufficiently long residence time for in-situ
degradation.

Formally, the optimization problem is described as
follows:

maxq;i;j

kqk1

1þ penðq; i; jÞ ð1Þ

subject to

qmin 6 q 6 qmax ð2aÞ
imin 6 i 6 imax ð2bÞ
jmin 6 j 6 jmax ð2cÞ

where norm k q k1 is the sum of the pumping rates of all
wells. Well coordinates are defined by rows i and columns
j, which are subject to optimization within the ranges of a
rectangular well placement area as defined by Eqs. (2b) and
(2c). The optimization problem is solved within a stack of S
realizations that statistically represent the uncertainty of
the hydraulic conductivity field. The objective function is
similar to that presented by Wagner and Gorelick [47],
but incorporates constraint violations for individual real-
izations as penalties.

In order to achieve high reliability, the goal is to mini-
mize the penalty pen, reflecting the most significant con-
straint violation among all individual realizations, r, of
the stack of S realizations. No active constraint yields
pen = 0, and bears 100% reliability. In this case, the OF
value (Eq. (1)) equals the total pumping rate to be maxi-
mized. The two constraints on drawdown and travel time
of groundwater from potentially contaminated zones are
combined in pen as exponential expressions:

Fig. 2. Hydraulic conductivity distribution of top and bottom layers for
base case. The row and column sizes of the uniform grid are 10 m wide.

404 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
penðq; i; jÞ ¼ maxrA
drðq;i;jÞ þmaxrBzrðq;i;jÞ ð3Þ

where dr quantifies the drawdown constraint violation for
each realization r:

drðq; i; jÞ ¼ max 0;
dact;rðq; i; jÞ � dmax

dmax

� �
ð4Þ

and, equivalently, zr refers to unacceptable residence time
of the groundwater:

zrðq; i; jÞ ¼ max 0;
zmin � zact;rðq; i; jÞ

zmin

� �
ð5Þ

r ¼ 1; . . . ; S ð6Þ

The exponents in Eq. (3) are higher than zero when realiza-
tion-specific results surmount the threshold on drawdown,
dmax, or residence time is below the given minimum of zmin.
The drawdown term dact,r is quantified individually for
each realization r as follows: First the head change, i.e.,
the drawdown of the water table due to pumping for a well
configuration (q, i, j) is computed by comparison to heads
for undisturbed flow. Then dact,r is calculated as the highest
measured relative drawdown in the model domain, which
certainly occurs at one of the pumping well positions. A
penalty (dr > 0) is assigned, when dact,r exceeds a given
problem-specific drawdown limit dmax, which is set fixed
for all realizations (Eq. (4)).

In terms of residence time, the risk of contamination
relies on the assumption that solute transport in groundwa-
ter occurs exclusively by advection, that is, no hydrody-
namic dispersion is taken into account. The penalty on
inadequate residence time is a function of the lowest resi-
dence time of all particles, zact,r. The latter is obtained by
forward tracking of particles (using MODPATH, [39])
originating from potentially contaminated zones to the
wells of a tested well configuration. A penalty (zr > 0) is
assigned if a given travel time threshold zmin is violated
(Eq. (5)). By setting A and B to 10100, the value of pen
already becomes 10 when a relative violation of 1% for
one constraint is found (Eq. (3)), and then exponentially
rises for more severe violations. Slightly invalid candidate
solutions are thus assigned an OF value that is at least
one order of magnitude higher than the total pumping rate.
Note that for the specification of A and B, as given above, a
precursory sensitivity analysis was carried to examine their
effect and to find out appropriate values for the optimiza-
tion problem.

In general, the presented penalty concept is only one
example of many possible variants. The effect on the opti-
mization procedure should be the same for any other
approach as long as invalid solutions are found undesirable
due to penalized OF values, and as long as the penalty
reflects the degree of violation for both constraints. This
is because, in each generation, CMA-ES selection of par-
ents is rank-based, and therefore only the comparative fit-
ness values among individuals, and not their absolute OF
values, are relevant. In other words, this means that selec-
tion is scaling invariant.
4. Demonstration example

To demonstrate the stochastic optimization procedure,
we employ a synthetic groundwater model set-up. A 3D
finite difference model implemented in MODFLOW 2000
[24] is used to simulate an unconfined aquifer consisting
of two connected sedimentary layers. The model area is dis-
cretized into 100 rows and 150 columns of 10 · 10 m2. The
thickness of both layers is set to 10 m. By using constant
head boundaries at the east (head: 17.75 m), and west
(20 m), and no flow boundaries on the north and south,
a regional hydraulic gradient of 0.15% was obtained. A
recharge of 365 mm/yr is assumed for the entire model
domain. The top layer is a mixture of fine sand
(k = 5e�4 m/s, volumetric portion = 70%) and gravel
(1e�2 m/s, 30%); the bottom layer consists of fine sand
(5e�4 m/s, 40%), coarse sand (1e�3 m/s, 40%) and gravel
(1e�2 m/s, 20%). Indicator kriging is used to produce the
distribution of hydraulic conductivity of both layers based
on exponential variograms [15]. Correlation lengths are set
to 300 m in a N–S direction, and 150 m in E–W. There is
no correlation between the hydrofacies in both layers, sim-
ulating a sedimentary stratigraphy that originates from two
depositional events (Fig. 2). Fig. 3 depicts a plan view of
the flow domain, with hydraulic head isolines of the top
layer under undisturbed conditions (no well active).

The unconditioned synthetic base case is generated to
define a virtual reality, i.e. the truth, which is assumed to

0 50 100 150

10

20

30

40

50

60

70

80

90

100

column

ro
w

19
.5

19

18
.5

18
.0

well placement area

particle pathlines

Fig. 3. Top view of base case hydraulic model with head isolines and 50 d
pathlines of particles emanating from the western upgradient boundary.
Crosses denote measurement points used to generate conditioned aquifer
realizations.

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 405
be only locally known. Conductivities in both layers and
heads from undisturbed, steady state modeling are sampled
at 15 locations as defined by a uniform 25 m mesh (see
crosses in Fig. 3).

The sampled conductivities are then used to produce
conditioned conductivity maps for both layers. Again, indi-
cator kriging is applied, however, with variable, randomly
chosen exponential variogram settings. In particular, volu-
metric portions of the different sedimentary facies and their
correlation lengths are not supposed to be exactly known
within a range of 25% around the values chosen for the
base case. The same uncertainty interval of 25% is selected
for the recharge parameter, which was identified as a con-
siderable factor in the planning of wellhead protection pro-
grams by Jyrkama and Sykes [27]. Undisturbed flow is
modeled for each realization, and the simulated heads at
the measurement points are compared to those sampled
in the true base case. Only those realizations that closely
match the base case are retained (matching criterion: abso-
lute head difference 60.1 m).

As an additional criterion, the total water volume inflow
rate of the candidate model aquifers is compared to that com-
puted for the base case. All candidate aquifers that derived
differences of more than 10% compared to the base case are
dropped. In practice, such comprehensive knowledge of the
regional water budget may not be available. For this hypo-
thetical example, this procedure is applied to produce aquifer
realizations that differ only marginally in their total water
budget and so omit extreme outliers that incessantly control
highly reliable solutions. It can be compared to defining a
prescribed flow condition at the western boundary. This pro-
cedure is repeated until a stack of 500 equally probable aqui-
fer realizations is created (i.e. in this case, stopped after
approx. 375.000 iterations). Obviously, this trial-and-error
approach may be replaced by alternative inverse modeling
methods. Due to the low computational time for generating
and comparing new realizations, we preferred to use this
straightforward, brute force type of method (cp. [7]).
For the optimization problem, the drawdown constraint
dmax is set at 1 m (Eq. (5)) over the entire domain. More-
over, it is supposed that pollutants can only emanate from
sources beyond the upgradient model boundary. This is
simulated by tracking particles that originate from the wes-
tern boundary grid cells. By placing one particle in each cell
of both layers, a total of 200 particle paths are examined.
The respective threshold of groundwater residence time,
zmin (Eq. (6)), is set to 50 days, according to common stan-
dards in Germany. For each candidate solution, particle
travel times to the wells are computed for any realization
of the evaluation stack and realization-specific lowest val-
ues (for the fastest particle), zact,r are determined assuming
steady-state conditions. Fig. 3 presents a top view of the
particle flowpaths at undisturbed flow conditions within
50 days.

We examine single-well and 3-well problems with free
well positions within a well placement area, that is situated
downgradient of the particle paths (imin = 20, imax = 80,
jmin = 25, jmax = 100). Well positions are assigned to the
nearest neighbor grid cell of the real valued location sug-
gested by the optimization algorithm. The range of accept-
able pumping rates at individual wells is set at qmin = 5 l/s
and qmax = 50 l/s for all cases (following a preliminary
investigation with some trial runs). For further discussion
on the implementation of an advective control problem
that is solved by evolutionary algorithms, the interested
reader is referred to Bayer and Finkel [4].

5. Stack ordering procedures

5.1. Basic stack ordering (SO) and no ordering (NO)

procedure

The innovative element in the stack ordering procedure
presented in this paper is a learning method which, in con-
trast to the common random sampling approach, guides
successive selection of realizations. Each time an individual
solution (pumping scheme) is evaluated for a stack of real-
izations, there will be one or a few realizations that produce
the worst results, showing the highest violations of con-
straints or, more generally, producing the lowest OF val-
ues. However, focusing only on a small number (i.e., a
fixed set) of critical realizations for optimizing the OF,
instead of the entire stack, is not recommendable for
non-linear, non-convex problems, such as the moving well
formulation. This is because the most critical realizations
will change depending on the particular combination of
decision variables (i.e., location of wells and corresponding
pumping rates) of the evaluated solutions. At different well
positions different realizations represent the binding con-
straints. Therefore, available approaches for the detection
of ‘‘worst case’’ realizations (e.g., [40,20,31,32]) can assist
in finding extreme realizations for a given well layout,
but are hardly sufficient in identifying the critical realiza-
tion for the entire design optimization problem. In other
words, as long as the 100% optimum (that is, the pumping

STOP

a

b

c

d

Fig. 4. Sketch illustrating basic stack ordering procedure (SO, a–c) and
stack ordering with reduction (SORed, d). Starting from top of the stack
(left side), realizations are evaluated until a certain criterion is not fulfilled,
for example, a penalized solution is calculated. The procedure is then
stopped, the entire stack is randomized and sorted according to the credits
(b), a process which is iteratively repeated (c). If, after numerous iterations
no new critical realizations are found, non-penalized realizations are only
probabilistically sampled or, as depicted in (d), discarded as a whole.

406 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
scheme that maximizes the OF while meeting the con-
straints for all realizations) for a stack is not known, it is
virtually impossible to interpret the relevance of extreme
model responses for this optimum.

During iterative optimization, such as evolutionary
search, the decision space is roughly investigated at the out-
set, so that significantly distinct candidate solutions are
evaluated in the first generations. When converging to an
optimum, exploration of decision space abates and local
search evolves until the algorithm converges to a (locally)
optimal or near-optimal solution. The disparity among
the candidate solutions in the initial phase yields a variety
of critical realizations, whereas in a later phase, local search
is governed by a small number of realizations that represent
the binding constraints for (locally) optimal and near-opti-
mal solutions. Hence, it seems reasonable to combine search
for optimum and detection of critical realizations directly.

A direct procedure is to sample one realization after
another, and then to ‘‘earmark’’ the one that yields the worst
result. Alternatively, in particular for cases where optimiza-
tion is dominated by strict design criteria (i.e., in terms of
constraints implemented in the OF as penalties), those real-
izations which yield penalized results may be branded. In
order to exploit information about the potentially critical
nature of realizations for the optimization procedure, we
suggest assigning a credit to the (‘‘bad’’) realizations and
conducting an ordered examination of the evaluation stack,
starting with the realization that has the highest credit. The
sequence of realizations that are sampled for the evaluation
of the OF is continuously updated. If a penalized OF value
appears, a new credit is added to the credit account of the
respective realization according to the position of the stack.
Before the next iteration (evaluation of next individual)
starts, the stack is sorted according to the credits. The
desired consequence is that critical realizations accumulate
on top of the stack and are evaluated first.

Merely assigning credits and sorting the stack, though
helpful in detecting potentially critical realizations, does
not provide the benefit of saving computational time. For this
purpose, we suggest stopping the OF evaluation if a critical
realization is discovered (Fig. 4a). Since the current candi-
date solution represents an invalid design and will hardly
be the 100% reliable optimum, no exact OF calculation is
required. Stopping before the entire stack has been evaluated
obviously yields an approximate, potentially underestimated
value of the OF, as further critical realizations can be
expected in the remaining part of the stack which has not been
evaluated. This means we introduce bias, and thus noise, by
breaking. The pertinent question is whether this significantly
compromises the performance of the search algorithm.

In view of the robustness of evolutionary algorithms
with respect to a certain degree of noise, stopping should
not represent a shortcoming. Furthermore, noise is only
introduced for invalid designs, and thus is expected to be
less influential compared with approximating feasible solu-
tions. Finally, the combination of stack ordering and
breaking early continuously collects critical realizations
that will be evaluated first in subsequent iterations. As a
result, the closer the optimization converges to a solution,
the more mature the set of critical realizations becomes,
and thus more accurate is the OF evaluation.

The general procedure of the basic stack ordering and
break (SO) method is schematically illustrated in Figs.
4a–c. Consider an initially unsorted stack (Fig. 4a). Itera-
tions (over potential pumping schemes) of the optimization
are counted from t = 1, . . ., tmax. Note that for an evolu-
tionary algorithm, iterations are equivalent to individuals.
If, during the sampling of realizations, the currently evalu-
ated solution does meet design constraint X (i.e., it is penal-
ized) for a realization r, then further sampling is stopped.
The number of realizations considered in iteration t may
be smaller than the size of the stack, and equals the posi-
tion of realization r in the stack, hereafter denoted as
sr(t) (with 1 6 sr(t) 6 S). The OF is approximated accord-
ingly, as realizations with later positions in the stack may
yield a higher penalty, but are not considered. A credit
Cr is assigned to the corresponding realization r, which is

Crðt þ 1Þ ¼ CrðtÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
srðtÞ � 1

p
: ð7Þ

This is done sequentially for each iteration (i.e., pumping
scheme). Note that taking the square root instead of just

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 407
the position leads to a more pronounced distinction be-
tween the top positions in the stack. In contrast, realiza-
tions which appear at much later positions are almost
credited the same. The rationale behind this is that the po-
sition of realizations without any credits is not ranked and
these realizations appear at bottom of the stack. It is sug-
gested that the list of un-credited realizations be random-
ized before each new ranking phase in order to minimize
the influence of the initial (random) stack order.

The following simple example clarifies the SO proce-
dure: Consider a small stack size of S = 22 realizations r

(r = 1, . . ., 22). Initially, as no credits have yet been
assigned, Cr(t = 0) = 0 for each r, and the position of each
realization in the stack is sr(t = 0) = r. The optimization is
started with the first individual (i.e., well configuration),
indexed by t = 1. First, the model is run for realization at
position sr = 1, and no constraint violation is found. This
is repeated for the next realizations until realization at posi-
tion sr = 10 yields a penalty (Fig. 4a). At this point, further
testing of realizations is stopped and the OF is assigned the
(penalized) value calculated for realization r = 10 at
s10(t = 1) = 10. Before repeating this procedure for the next
individual (t = 2), realization r = 10 is assigned a credit of
C10(t = 2) = 3 (Eq. (7)). After that, the stack is shuffled and
then ordered according to the credits assigned so far. This
means realization r = 10 moves to the top of the stack
(Fig. 4b): s10(t = 2) = 1 and the other realizations’ position
is randomized.

For the subsequent individual t = 2 the procedure
described above is repeated until a certain realization r vio-
lates the constraints, gets a credit according to its position
sr(t = 2) and a new position in the stack for t = 3. It will
displace realization 10 from the top of the stack if
sr(t = 2) > 10 since Cr(t = 3) > C10(t = 3) = 3. Please note
that no credit will be assigned to realization r = 10 (in case
it violates the constraints again), due to its top position
(Eq. (7)). Also no credit is assigned if no constraint viola-
tion is found after testing of all realizations. During the
course of the optimization, iteration by iteration, an
increasing number of critical realizations will be identified
and ranked within the stack according to their credits.

The basic SO procedure is applied to the water supply
problem and compared to a so-called ‘‘NO procedure’’.
The latter is similarly based on an examination of each
realization for each OF evaluation, but uses an entirely
randomized stack. The comparison is to reveal the effi-
ciency of stack ordering. In addition to the basic SO proce-
dure, subsequent stack ordering variants (SORed, SORep,
SORepDecay) are developed. A summary and comparison
to random realization sampling methods (NO, NORep) is
given in Fig. 5.

5.2. The stack ordering and reduction (SORed) procedure

From experience and knowledge gained while applying
the SO method, we further developed the method so as
to increase the efficiency of the optimization procedure.
We call this new method ‘‘stack ordering and reduction’’
(SORed) (Figs. 4 and 5) whereas ‘‘reduction’’ refers to
the probability of sampling. The procedure works like SO
as long as new critical realizations are found more or less
regularly from generation to generation. The modification
only becomes active if no new critical realizations are
found in f previous generations, that is, if no previously
uncredited realization has been assigned a credit. Parame-
ter f represents the iteration threshold. This also means that
no savings could be made in previous generations since no
break occurred. If so, a reduced probability of sampling is
introduced, causing not all realizations to be sampled any-
more. By defining an additional criterion C* (with C* P 1),
the probability is determined as follows. For realizations
with very low or no credits (Cr < C* � 1) sampling proba-
bility is pr = (1 + Cr)/C*, whereas those realizations with
Cr P C* � 1 are definitely selected (pr = 1). Computational
savings decrease the closer C* is set to its lower limit 1. In
essence, those realizations which have so far significantly
controlled the evolutionary search are most likely to be
considered, while others are likely to be discarded in order
to save model runs.

The iteration threshold f is set as a multiple of genera-
tions, reflecting that major changes of individuals have to
be expected from one generation to the next. In the pre-
sented example application, two values of f are considered,
f = 5 and f = 10, in order to examine the influence of this
parameter on the outcome. These values of f represent
thresholds of (k · f = 7 · 5=) 35 or (7 · 10=) 70 iterations
for the single well case, and of (k · f = 10 · 5=) 50 or
(10 · 10=) 100 iterations for the 3-well case. The value of
C* is set to 4 and so all non-credited realizations are sam-
pled according to probability 1/4. Although this value is
empirically based on a preliminary investigation, sampling
only every fourth is assumed to be a very conservative esti-
mate, and even rigorously neglecting all non-credited real-
izations could lead to satisfactory results. However, as
soon as some realizations of the stack are, potentially,
not sampled, the possibility of detecting solutions having
a nominal reliability RN of less than 100% will increase.
The higher the value of C* is set, the higher this chance
is. In view of this, C* should be as low as possible, but in
practice will mainly be limited by the expected computa-
tional effort. In this study, the values of RN are computed
in a post-optimization investigation by testing a suggested
(optimized) well configuration for the entire stack.

5.3. Stack ordering and no ordering with replacement

(SORep, SORepDecay and NORep)

This alternative implementation of stack ordering
adopts suggestions by previous studies (e.g., [44,10]) to dis-
tinguish between a small evaluation stack and storing the
remaining realizations in the repository stack. This means
inspecting only a subset of the 500 realizations for the eval-
uation of candidate solutions (see Fig. 1). A self-evident
procedure is to utilize only highly credited realizations in

Fig. 5. Procedural elements and related free parameters of stack ordering and random sampling methods.

a

b

c

Evaluation stack Repository stack

STOP

Fig. 6. Sketch illustrating stack ordering with two subsets, an evaluation
and a repository stack, which is realized by SORep and SORepDecay.
Starting with a random selection of realizations take from the entire stack,
the evaluation stack (left side) is sampled until a certain criterion is not
fulfilled, for example a penalized solution is calculated (a). Then the
procedure is stopped, the evaluation stack is merged with the remaining
realizations in the repository stack, and the entire stack is randomized,
then sorted according to the credits (b), a process which is iteratively
repeated (c).

408 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
the evaluation stack. Such a procedure is comparable to
SORed with the difference that none of the non-credited
realizations is sampled. However, if doing so, one major
question is: which realizations are the most critical ones?
Since these realizations are not known at the start of an
OR, we again propose dynamically identifying them during
the search. An ideal method of achieving this is by assign-
ing credits, as demonstrated above.

As the most basic implementation, we define a size, Seval,
of the evaluation stack that is fixed within an optimization
procedure (Fig. 6). The evaluation stack represents a subset
of the 500 realizations that is updated for each new individ-
ual. In the beginning of the optimization, no credits are
assigned yet, and Seval realizations are sampled randomly.
As soon as credited realizations are encountered, probabil-
ity-based sampling, as introduced for SORed, is applied.
Note that no iteration threshold f is used here. Equivalently
to SO and SORed, all 500 realizations are randomized and
then sorted according to their credits. Starting from the top
of the entire stack, the evaluation stack is filled up with
Seval realizations. This is done prior to each iteration. That
is, the evaluation stack used for the preceding iteration is
replaced by a new one. Accordingly, this procedure is
termed ‘‘stack ordering with replacement’’ (SORep). The
rest of the realizations are kept in the repository stack,
and then merged with the evaluation stack for the succes-
sive randomizing, sorting and sampling event.

Subsequently, ‘‘stack ordering with replacement and
decay’’ (SORepDecay) is to be developed. Here, a decay

Table 1
Best results for single-well and 3-well problems which are assumed to be
global or close-optimal solutions

q Row Col.

1-Well case

32.4 25 75
32.3 51 50P

q q1 Row Col. q2 Row Col. q3 Row Col.

3-Well case

67.7 24.7 50 49 27.8 25 74 15.2 77 39
67.4 23.9 50 50 18.9 25 95 24.6 25 51
66.5 24.3 50 51 20.9 26 99 21.3 75 49

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 409
factor is introduced that decreases the credits of realiza-
tions during the optimization. It builds upon the results
of the other stack ordering procedures and, hence, will be
described in detail in the following section.

For the purpose of comparison, we also employed
NORep, which stands for no ordering, and random sam-
pling of realizations for evaluation. This conceptualizes
the procedure of a noisy GA, but with fixed evaluation
stack size (e.g., [44]). The comparison will show the effect
of stack ordering, particularly with respect to optimality
and reliability of the optimized results.

6. Application and results

6.1. Optimization procedure and evaluation

Due to the stochastic nature of evolutionary algorithms,
applying more than one optimization run (OR) is recom-
mended in order to raise the probability of detecting the
global optimum. One OR corresponds to one CMA-ES
application with a fixed number of objective function eval-
uations (i.e., iterations). Each OR is unique and yields dif-
ferent convergence characteristics when converging to an
optimum. Therefore, representative results are only
obtained by inspecting several ORs. When using time-con-
suming numerical models, a satisfactory and statistically
correct examination of the optimization procedure is
restricted by the high computational effort that would be
required for dozens to hundreds of ORs and a stack size
of 500 realizations. As a compromise, it is common practice
to use a feasible number of ORs for each problem or set-
ting, which would enable insight into the major character-
istics (convergence rate) of the evolutionary search. In
subsequent applications, statistical results are presented.
Depending on the problem (i.e., well case) to be solved,
for repeated ORs the number of OF evaluations (i.e., indi-
viduals) is predefined and not varied. Median convergence
rates as well as the 10% and 90% quantiles are shown for 10
ORs (options SO, SORed) and 25 ORs (options SORep,
SORepDecay), respectively. This is in line with related
work in this field (e.g., [34,8]).

In a previous study on well placement for pump-and-
treat-systems with 100 different deterministic heteroge-
neous models, Bayer and Finkel (2007) recommended the
use of about 50 generations per well. Comparatively con-
servative settings were chosen here. The maximum number
of iterations was set to 602 (i.e., 86 generations, k = 7) per
OR for the single-well case and 1800 (180 generations,
number of individuals per generation k = 10) for the 3-well
case. Please note that each well is represented by three deci-
sion variables: the pumping rate and the two coordinates.

Both extraction rates of single-well and 3-well configura-
tions have been maximized. The several hundred ORs per-
formed per well configuration delivered numerous different
optimized systems, reflecting both the complexity of the
problem being solved as well as the singularity of CMA-
ES runs. As a full enumeration of the decision space was
computationally unfeasible, it cannot be assured that, even
after this exhaustive examination, the globally optimal well
configurations were found. Nevertheless, the best 100%
reliable solutions that had been detected were reproduced
several times (same or similar well positions and slightly
different pumping rates). Consequently, it can be assumed
that these are either very close or equal to the global
optima, and hence we use the fitness of these solutions as
references for assessment of optimized well configurations.

Table 1 lists these reference well layouts, and exposes a
common feature: preferable well positions appear to be
close to those measurement locations that indicate high
hydraulic conductivity values and served as conditioning
points for generating the stack of realizations. These posi-
tions appear to be particularly optimal since here modeling
results show the least variations. Therefore, for the test case
considered, this observation can even be regarded as com-
mon sense criterion to assess the optimality of well posi-
tions, since the global optima are not known. Particularly
at a central (row 51, column 50) and a northwestern loca-
tion (25/75) in the well placement area, high pumping rates
can be achieved due to comparably high local conductivi-
ties and due to a certain distance from the potentially con-
taminated upgradient model boundary. The two best well
locations identified are very close or exactly match with
measurement locations. Ideal 3-well systems share the first
position (51/50). Additional wells commonly have similar
pumping rates and are, again, favorably located close to
measurement points. Three optimized variants with consid-
erably different geometric arrangement of wells are listed in
Table 1. Compared to the outcome for the single-well case,
the total extraction rate can be more than doubled by add-
ing two further wells.

6.2. Stack ordering and break (SO)

We start with the analysis of the single-well case, which
is optimized by evaluating the entire stack without ordering
(NO) and with the presented basic stack ordering (SO) pro-
cedure. As listed in Table 2, comparable values are
obtained for median fitness values after 602 function eval-
uations, which lie slightly below the optimum (see Table 1).
Apparently, a fraction of the 10 ORs has not converged to
the desired solution (minimum q = 32.4 l/s), which reflects

Table 2
Single-well case: statistics of fitness values, reliability, savings and average number of critical realizations for NO, SO, and SORed

NO SO SORed (f = 10) SORed (f = 5)

Median fitness, q (l/s) 30.8 31.1 30.9 30.8
10% quantile (l/s) 27.4 28.2 27.8 28.2
90% quantile (l/s) 32.4 32.4 32.4 32.4

Median reliability (%) 100 100 100 100
10% quantile (%) 100 100 99.8 100
90% quantile (%) 100 100 100 100

Median savings (t = 300, %) 0 35.1 37.9 47.8
10% quantile (%) 0 28.6 29.8 37.4
90% quantile (%) 0 39.6 48.0 57.4

Median savings (t = 602, %) 0 39.9 58.5 66.1
10% quantile (%) 0 36.7 49.3 59.8
90% quantile (%) 0 46.4 66.2 72.0

Median number of credited realizations 0 36 32 36

For the latter, two variants are examined with two different values of the threshold parameter f for the switching point to probabilistic sampling. Savings
are calculated by comparing the total number of model runs to the number that would be established if all realizations were used.

410 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
the difficulty in solving the moving well problem for even
one single well, as well as the limited search ability of heu-
ristic optimization algorithms. Specifically, 2 solutions
found by NO and 3 solutions by SO are wells far away
from the supposed optima listed in Table 1. However, a
paramount finding is the similarity of statistics for the con-
vergence properties of both approaches (Table 2, Fig. 7).
This suggests that the noise introduced by SO does not sig-
nificantly corrupt the evolutionary search here.

Due to the immense computational burden, the 3-well
problem was not solved by NO. The results for the SO
approach are listed in Table 3. Again, each CMA-ES run
shows individual characteristics, and as reflected by the
lower 10% quantile, some of the identified well configura-
tions are sub-optimal. Despite this, the median fitness of
the best solutions after 1800 iterations (Table 3) converged
very closely to the desired values listed in Table 1. The
median total pumping rate,

P
q, reached 60 l/s, which is
0 100 200 300 400 500 600
10

15

20

25

30

iteration

fit
ne

ss
 (l

/s
)

NO
SO
SORed(f=10)
SORed(f=5)

Fig. 7. Median convergences of 10 optimization runs (ORs) for single-well
problem for no ordering (NO), and three stack ordering methods.
about 10% lower than the overall best solution found for
this problem. Further inspection of individual ORs sug-
gests that even 1800 function evaluations were not suffi-
cient to converge to proximity of the optimal solution for
about a half of the ORs. The issue of premature termina-
tion, which may prevent the solution procedure from iden-
tifying a satisfactory well configuration, is of essential
importance in practice. A common approach in practical
applications is, therefore, to consider a termination crite-
rion that is oriented at the course of the optimization,
and stops the OR if, for example, some stagnation criterion
is met.

Within this study, emphasis is placed on the comparison
between different methods of stack ordering with a conven-
tional multiple realizations approach. In order to achieve
direct comparability, we set a fixed maximum number of
iterations for all ORs, independent of the particular solu-
tion method used. This was done even if individual ORs
may not have reached a satisfactory convergence, and in
this way, we guaranteed the same conditions for all meth-
ods we examined. Restricting the computational timeframe
is also in accordance with related work, for example by
Smalley et al. [44] and Chan Hilton and Culver [12].

The typical history of an OR when SO is applied is
shown in Figs. 8a and b for both the single- and the 3-well
case, respectively. In both well cases, a general observation
is that the number of credited (=critical) realizations
increases, particularly during the initial search phase, and
then stays nearly constant. This is because the search
becomes more and more local. During the later search
phase, (most of) the realizations that determine the struc-
ture of the respective part of the fitness landscape are
already grouped on top of the stack. In other words, the
more mature the search, the less important the role of
non-credited realizations is. However, as local search
evolves and ‘‘moves’’, critical realizations can still be
found, even at later stages.

Table 3
3-Well case: statistics of results for two stack ordering implementations, SO (stack ordering) and SORed (stack ordering and reduction)

SO SORed (f = 10) SORed (f = 5)

Median fitness,
P

q (l/s) 60.0 61.6 60.7
10% quantile (l/s) 58.0 56.8 58.2
90% quantile (l/s) 65.3 66.3 63.7

Median reliability (%) 100 100 100
10% quantile (%) 100 99.8 99.8
90% quantile (%) 100 100 100

Median savings (t = 900, %) 48.7 56.0 71.3
10% quantile (%) 43.9 49.6 65.3
90% quantile (%) 53.0 61.6 74.7

Median savings (t = 1800, %) 51.0 69.3 78.5
10% quantile (%) 47.5 61.3 75.3
90% quantile (%) 55.4 73.3 81.0

Median number of credited r 62 57 60

For the latter, two variants are examined with different values of the threshold parameter f for the switching point to probabilistic sampling. Savings are
calculated by comparing the total number of model runs to the number that would occur if all realizations were used.

0 200 400 600
0

100

200

300

400

500

iteration

cu
rre

nt
 p

os
iti

on
 in

 s
ta

ck
 s

r

cu
rre

nt
 p

os
iti

on
 in

 s
ta

ck
 s

r

0 500 1000 1500
0

100

200

300

400

500

iteration

a b

single well
case

3-well
case

Fig. 8. Positions of new credited realizations (cross markers) and number
of credited realizations in the sorted stack (lines) for two optimization runs
using SO applied to (a) single-well case and (b) 3-well case.

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 411
The absolute savings with SO are very similar for all
ORs, as reported by the statistics in Tables 2 and 3. About
40% of the model runs could be saved after 602 iterations
for the single well problem. An even higher value of 51%
was observed for the 3-well case after 1800 iterations.
The more demanding search investigates an elevated num-
ber of invalid (i.e., penalized solutions) and so causes a
break in further sampling with increased frequency.
Accordingly, the (median) number of credited realizations
is higher for the higher-dimensional problem, which rises
from about 35 to 60.

6.3. Stack ordering and reduction (SORed)

The findings shown in Fig. 8 inspired the set-up of the
SORed variant. If during the course of the optimization
the number of credited realizations stagnates, why not sim-
ply neglecting the rest of the stack? In accordance with the
NO and SO approaches described above, 10 ORs were con-
ducted for each problem and value of f. The statistics
reported in Tables 2 and 3 highlight the similar statistics
for the optimized fitness values, which basically proves
comparable performance of the solver for all implementa-
tions with different stack ordering variants (Fig. 7). The
new finding for SORed is that, as anticipated, occasionally
nominal reliabilities RN of the optimized solutions do not
reach 100%. However, median reliabilities are maximal,
and critical realizations were overlooked in only a few
number of optimization runs. This is quantified by the
90% quantiles of RN, independent of the number of wells
and the value of f. Maximally, one relevant realization
was neglected (RN = 99.8%).

Of particular interest are the computational savings in
model runs that can be achieved by ordering the stack.
Fig. 9 contains the average (median) relative savings as
function of the number of iterations for the two variants
of the SORed method in comparison to SO. In the initial
search phase of both well problems, savings tend to be very
high, then decrease and remain almost constant for SO.
Initial savings result from early breaks of the evaluation
as invalid solutions appear frequently during this less
guided global search phase. Also, in this early phase, the
savings trade-offs for all stack ordering implementations
are predominantly irregular. This is due to random initial-
ization and the initial explorative search.

For the SORed variants, star markers denote the switch-
ing-points when probability-based sampling comes into
play. As soon as switching takes place, a significant
increase in savings can be observed. As shown in Fig. 9b,
savings tend to level off in the long run. The uniqueness
of evolutionary search yields a scattered picture of switch-
ing points. As expected, for f = 5, switching occurs earlier
after about 35 generations on the average in both well
cases. At f = 10, switching points are concentrated at 350
iterations (50 generations) for the single-well case, and

0 500 1000 1500
iteration

iteration

0

60%

40%

20%

80%

10%

100 200 300 400 500 600
0

0

20%

30%

40%

50%

60%

70%

a

b

re
la

tiv
e

sa
vi

ng
s

re
la

tiv
e

sa
vi

ng
s

SO
SORed(f=10)
SORed(f=5)

SO
SORed(f=10)
SORed(f=5)

Fig. 9. Median savings of 10 optimization runs for (a) single-well problem
and (b) the 3-well problem for two stack ordering methods, SO and
SORed. For the latter, two variants are examined with different values of
the threshold parameter f for the switching point to probabilistic sampling.
Stars denote the OR-specific point where switching to probability-based
selection occurs.

412 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
for the 3-well case, about twice the number of iterations (70
generations) is required. As a general conclusion we can
state that high values of f and problem dimension tend to
delay switching.

Comparing the number of credited realizations of the
different stack ordering methods shows these median val-
ues to be nearly constant (Tables 2 and 3). This suggests
that the number of credited realizations is problem-depen-
dent, but not controlled by the different solution
procedures.

Probability-based sampling increases savings, particu-
larly when the smaller value of f is chosen. However, higher
differences exist between the individual ORs as an effect of
the different switching point positions. This is quantified
by the quantiles for savings at halftime (t = tmax/2) and
after the entire number of iterations in Tables 2 and 3.
Although computational savings of between 60% and
80% are significant, solving such a multiple realization
problem can still require an enormous computational
effort. For the problem presented here, 100,000 to
200,000 model runs are needed for one OR, which would
become prohibitive if the model running time were to take
longer than seconds. Therefore, more rigorous stack order-
ing methods are proposed in the next chapters.

6.4. Stack ordering and replacement (SORep)

For this stack ordering variant, the objective function is
only evaluated by using a small subset of all realizations,
that is, the evaluation stack. It has a fixed size of Seval real-
izations that are dynamically replaced with better odds of
achieving those realizations with higher credits. The higher
the value of Seval, the more similar SORep and the basic SO
variant become. The value of Seval is supposed to have a
substantial impact on savings of model runs.

The question, which can hardly be answered a priori, is
how the size of the evaluation stack can be adjusted to find
a good compromise between computational savings and
reliability of optimized solutions. With respect to reliabil-
ity, we anticipate that appropriate values of Seval should
be of the same magnitude as the number of critical realiza-
tions, which are expected to be problem-specific. In order
to examine the role of Seval for both efficiency and quality
of optimization in this work, we subsequently compare the
outcome for different sizes, Seval = 5, 10, 25 and 50.

A lower limit of savings for SORep can be calculated by
(S � Seval)/S. However, due to occasional break, additional
savings can occur. Similar to the approach described for
SO and SORed, the OF evaluation starts with the realiza-
tion that collected the highest credits and ‘‘breaks’’ as soon
as a penalized solution is found. The dependency of savings
on the selected value of Seval can be seen from the values
listed in Table 4. Increasing Seval decreases the savings from
about 99% to nearly 94% with similar values for both well
cases.

Again, repeated ORs are used to derive a statistical
quantification. More accurate results are obtained by 25
ORs instead of only 10 ORs that have been used previously
for more computationally demanding implementations.
Inspection of the results reveals that the lower Seval is set,
the more frequently apparently good solutions of high fit-
ness are identified in the initial search phase of the evolu-
tionary algorithm, but not reproduced later. This is due
to the fact that early evaluation is biased by inappropriate
criticality of the stack. Post-optimization analysis thus
reveals very low values of nominal reliability for these early
solutions. Later, a better adaptation of the stack reduces
the noise in optimization and enhances an increasingly
local search (a feature virtually utilized also in robust
GA). As we wish to keep the biased early solutions out
of the examination of the results, only the best solutions
found during the second half of the search, that is after
43 (single-well case) and 90 (3-well case) generations, are
analyzed and discussed here. The results are summarized
in Figs. 10 and 11.

Table 4
Median values of optimized pumping rates, reliabilities of optimized solutions and computational savings after 25 ORs for stack ordering procedures with
replacement (using evaluation and repository stack)

Seval Single well (602 iterations) 3 Wells (1800 iterations)

NORep SORep SORep decay NORep SORep SORep decay

Pumping rate (l/s) 5 53.5 54.4 43.8 88.4 106.0 88.4
10 48.2 45.1 31.8 85.7 94.8 63.7
25 33.1 33.7 32.6 69.8 71.4 61.3
50 33.2 31.8 32.0 66.4 62.2 61.7

Reliability (%) 5 68.8 73.4 88.9 70.0 40.8 73.9
10 84.0 90.8 97.8 75.6 70.2 96.2
25 98.5 99.6 99.8 94.0 94.0 99.2
50 99.3 100.0 100.0 96.7 99.4 99.4

Savings (%) 5 99.2 99.2 99.5 99.4 99.3 99.4
10 98.6 98.7 98.9 98.8 98.7 98.9
25 97.2 97.3 97.5 97.2 97.3 97.9
50 93.3 94.2 94.4 94.9 94.9 95.1

Savings are calculated by comparing the total number of model runs to the number that would be established if all realizations were used.

0

10

20

30

40

50

60

70

to
ta

l p
um

pi
ng

 ra
te

 (l
/s

)

50

60

70

80

90

100

no
m

in
al

 re
lia

bi
lit

y
(%

)

NORep

SORepDecay
SORep

size of evaluation stack (Seval)
5 10 5025

Fig. 10. Single-well problem: median and quantile ranges (10–90%) for
implementations using an evaluation stack of different sizes (25 ORs). The
dashed line indicates the total pumping rate of the optimized well layout
(cp. Table 1).

50

60

70

80

90

100

110

120

20

40

60

80

100

to
ta

l p
um

pi
ng

 ra
te

 (l
/s

)
no

m
in

al
 re

lia
bi

lit
y

(%
)

NORep

SORepDecay
SORep

size of evaluation stack (Seval)
5 10 5025

Fig. 11. 3-Well problem: median and quantile ranges (10–90%) for
implementations using an evaluation stack of different sizes (25 ORs). The
dashed line indicates the total pumping rate of the optimized well layout
(cp. Table 1).

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 413
When evaluation stack sizes are small, that is Seval 6 10,
then both NORep and SORep yield very unsatisfactory
results. For both the single- and the 3-well case, the pump-
ing rates are highly overestimated, which yields a low reli-
ability of the candidate solutions. Increasing Seval from 5 to
10 raises the reliability due to the higher number of realiza-
tions that determine the objective function value with each
iteration. However, the achieved median reliability of 80%
is still unsatisfactory. Evidently, both implementations
have not considered a sufficient number of critical realiza-
tions for iterative evaluation of the objective function. This
feature is particularly unexpected for the NORep variant
that simulates the noisy GA concept. Calculated reliabili-
ties are lower than the close to 100% values found by [44]
for a bioremediation design example. In principle, how-
ever, a direct comparison of these results with those
obtained in our study is not possible because of the differ-

414 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
ent solvers used. Despite the role of the solver, the perfor-
mance of the noisy GA seems to depend significantly on the
type of problem, its dimension and complexity. In particu-
lar, the influence of hydraulic conductivity variance on the
fitness landscape appears to be substantial. This is con-
firmed by the work of Chan Hilton and Culver [12], which
shows variable reliabilities of optimized remediation sys-
tems that are configured based on a noisy GA. These find-
ings may also explain the comparatively low reliabilities
here, where a 3D model of high variance of hydraulic con-
ductivity is utilized.

Further inspection of Fig. 11, namely the achieved reli-
abilities for Seval 6 10, reveals that NORep outperforms
SORep. Here, the optimization evidently does not benefit
from focusing on the critical realizations. Reliabilities can
even reach values of less than 30%. Simultaneously, total
pumping rates are highest. The reason for this can be found
in Fig. 12, which shows the (median) number of credited
(i.e., potentially critical) realizations over increasing num-
ber of iterations. For Seval = 5 and 10, early stagnation is
reached at values slightly higher than Seval. These numbers
are by far lower than the number of credited realizations
computed for stack ordering implementations that exploit
all realizations in the evaluation stack (see Tables 2 and
3). In fact, one shortcoming of SORep is an early accumu-
lation of credited realizations in the evaluation stack. As
soon as a realization collected a certain number of credits,
the restrictive probabilistic sampling procedure imple-
mented here did not allow other realizations to replace
existing ones in the evaluation stack, and hence no credits
could be allocated to new ones. Consequently, as listed in
Table 4 and depicted in Figs. 10 and 11, raising Seval can
remarkably enhance nominal reliability of solutions. In
both well-cases, the positive effect of high Seval is more pro-
nounced for SORep than for NORep.
0 200 400 600
0

10

20

30

40

50

60

70

iterations

no
. o

f c
rit

ic
al

 re
al

iz
at

io
ns

a

5
10

5

10
25

25 50
50

SORep
SORepDecay

Fig. 12. Median number of credited realizations of 25 ORs for (a) the single-w
methods, SORep and SORepDecay. Numbers refer to the particular size of th
6.5. Stack ordering, replacement and decay (SORepDecay)

To overcome the above-mentioned problems introduced
by early assembling of the evaluation stack, the sampling
could be made more random by reducing the influence of
the credits on composition of the evaluation stack (for
example: C*� 4). However, this could also lead to a con-
siderably delayed accumulation of critical realizations, thus
resulting in a late convergence. Instead, we recommend
incorporating the point in time when credits are assigned,
in order to enable a more dynamic sampling of potentially
critical realizations. This is based on the assumption that
the part of the decision variable space, which is explored
during an OR, changes as local search evolves. Realiza-
tions that are credited in the initial search phase may not
be critical anymore in the later iterations and should there-
fore be discarded.

Thus, we propose another method, SORepDecay, which
denotes the same approach as SORep but with a ‘‘decay’’
factor, k (0 < k < 1). The value of k is multiplied with all
existing credits each time when in the previous iteration
no penalized solution has been found, that is, no credits
have been assigned (Fig. 5). By this decay procedure, a pos-
sibly long-term but invalid dominance of credited realiza-
tions is mitigated. If the realizations currently forming
the evaluation stack do not produce invalid results, that
is, they are not critical at this stage of the optimization pro-
cess, their credits are reduced.

The effect on the number of critical realizations is visu-
alized, in comparison to SORep, in Fig. 12. Independent
from Seval, new realizations are continuously assigned cred-
its. As exposed by the small difference between Seval = 25
and 50 for the single-well case, there seems to be an upper
limit which closely matches the median value of credited
realizations of about 35 reported in Table 1. Differences
0 500 1000 1500
0

10

20

30

40

50

60

70

iterations

no
. o

f c
rit

ic
al

 re
al

iz
at

io
ns

b

10

5

5

10

25

25

50

50

ell problem and (b) the 3-well problem. Comparison of two stack ordering
e evaluation stack.

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 415
are more remarkable for the 3-well case. Increasing Seval

always augments the number of credited realizations and,
especially for Seval = 50, it seems that this number would
increase beyond 75 after more than 1800 iterations.

As demonstrated in Figs. 10 and 11, the most appealing
outcomes are produced by SORedDecay. There are sub-
stantial discrepancies in the results from SORep and
NORep, even for small settings of Seval. For example, for
Seval = 5, nearly all single-well solutions achieve nominal
reliabilities of more than 80%. For Seval = 10, three solu-
tions already have close-optimal fitness values at nominal
reliabilities of 100%. These increase to 12 for Seval = 50.
For the problem cases studied here, minor differences exist
between the outcomes for Seval = 25 and 50, suggesting
that in this case an ideal setting of the evaluation stack size
to save a maximum number of model runs is of the order of
Seval = 25 and lower.

Of particular interest are the savings in model runs that
have been achieved relative to the number of simulations
that would have been required without stack ordering
(i.e., using NO). We inspected the ORs for Seval = 25
(Table 4) and calculated estimates of between 97.5% (sin-
gle-well problem) and 98% (three wells). Numerically, this
means one OR requires 10–12.5 model runs per iteration
on average, instead of 500. Due to the enhanced selection
of credited realizations compared to random sampling
(NORep) and the restricted accumulation of these realiza-
tions in the evaluation stack compared to SORep, compu-
tational savings are generally slightly higher. For
SORepDecay, the evaluation stack apparently is best up-
to-date during the course of the optimization and collects
the currently most critical realizations. This enforces early
break when successively testing the sampled and ranked
realizations.

To apply the most efficient variant, SORepDecay, three
parameters have to be set, k, C* and Seval. Experience from
sensitivity analyses with the problem here renders C* to be
of only minor importance. This parameter controls the
probability, pr = (1 + Cr)/C*, of sampling of realizations
with low credits, which, in general, have little effect on
the performance of the search. An upper limit of C* should
be referred to the maximum credit a realization can get in
one iteration which is (Seval � 1)0.5 (Eq. (7)) with Seval rep-
resenting the size of the evaluation stack. Two aspects have
to be considered when specifying Seval. On the one hand
Seval should be set as high as possible in order to make sure
that all relevant realizations are considered during the opti-
mization. On the other hand high values of Seval are not
desirable, because relative savings in computational time
are approximately inverse proportional to Seval (Table 4).

Obviously, the quantity of relevant, i.e., potentially crit-
ical realizations can not be determined a priori, since criti-
cality is not only an inherent characteristic of a particular
realization but also a function of the design of the technical
system (here: well field layout) to be evaluated. Note that
the layout changes during the course of the optimization
when iteratively evaluating candidate solutions.
It is suggested to step-wise augment Seval in successive
ORs, starting with a small value, such as Seval = 10, until
optimized solutions with sufficiently high reliability are
found. In general, the appropriate value of Seval will be
affected by the variability of properties of the individual
realizations. The lower the variability, the larger the
required size of the evaluation stack will be. A small eval-
uation stack might be sufficient if there are only a small
number of realizations that exhibit features causing failure
of a broad spectrum of different candidate solutions. By
contrast, for the water supply problem considered here,
the number of relevant realizations is considerably large.
This is due to the fact that particular realizations differ
mainly with respect to spatial hydraulic conductivity distri-
bution but only marginally concerning their volumetric
water budget (recall that water volume inflow rate varies
only ±10% compared to base case). In order to get a rough
idea of the quantity of relevant realizations, we analyzed
those realizations that represent the binding constraints
for optimal single-well systems at fixed positions. Deter-
mining the single binding constraint for the optimal solu-
tion at each of the 4636 possible well positions separately
results in a compilation of more than 50 realizations.

The decay factor, k, can be used to achieve a similar
optimization performance at a reduced evaluation stack
size. However, the effect of k shrinks for increasing Seval

(Figs. 10 and 11, and Table 4). An evident approach, there-
fore, is to fix k before successively augmenting Seval (see
above). The value used in this study, k = 0.1, seems to be
reasonable. However, a detailed investigation of the joint
role of Seval and k will have to be subject to further
research.

7. Conclusions and outlook

The new technique of reliability-based stochastic optimi-
zation introduced within this study represents a promising
extension to existing methods dealing with multiple realiza-
tions. This straightforward stack ordering procedure
assumes the existence of ‘‘worst case’’ or critical realiza-
tions. These represent the binding constraints when a reli-
ability-based objective function is evaluated, regarding
numerous model alternatives rather than an exclusively
deterministic one. When the models are iteratively called
during the optimization, their specific results are compared
so as to rank the realizations according to their relevance
for the objective function calculation. The experience
gained from repeated model calls is utilized to achieve a
progressively more mature order in the set of realizations
(the stack). This means that the ‘‘criticalness’’ of realiza-
tions is not only assessed in relation to one candidate solu-
tion which is tested in a single iteration, but to an
increasingly representative number. These candidate solu-
tions are search points that delineate the objective function
response surface (i.e., the fitness landscape). Accordingly,
the iterative learning procedure reveals if critical realiza-
tions change among search points. This is particularly

416 P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417
essential after the optimization routine has explored the fit-
ness landscape and converged to a (sub-)optimal solution.
If, while converging, it is possible to detect those critical
realizations, this small set can be used as substitute of the
entire stack. This enables significant computational savings
for what is (commonly) an extremely demanding optimiza-
tion with multiple realizations.

An essential element of stack ordering is the use of a
noise-insensitive solver that iteratively evaluates the objec-
tive function. This is because the highest savings are
achieved when approximations of the true objective func-
tion values for a stack are obtained from a small sub-set
of realizations. The noise produced is shown to be of minor
relevance for the performance of a typical stochastic global
search algorithm, such as the evolutionary optimization
(CMA-ES) method implemented here. The single-objective
approach maximizes both fitness and reliability, the latter
being crucial for risky water resource management. Never-
theless, as demonstrated for an exemplary fresh water sup-
ply problem, hundreds of objective function iterations are
still required to adapt the numerous decision variables rep-
resenting the well layouts of a moving well problem. The
high non-linearity and non-convexity of the objective func-
tion, which is mainly introduced by the heterogeneity of the
hydraulic conductivity, increases the difficulty of detecting
an optimal solution. In practice, repeated optimization
runs will be necessary to reliably compute the best well
configuration.

Based on a demanding hypothetical example, several
variants of methods are developed that work with stack
ordering. Also, two different well-problems with one
and three wells are distinguished. The results of the sta-
tistical examination reveal the high potential of each var-
iant tackling multiple realization-based problems that
would be virtually untreatable when all realizations are
subject to optimization each time the objective function
is evaluated. Compared with this, the most efficient var-
iant, stack ordering with replacement and decay (SORep-
Decay), obtained relative savings in model runs of more
than 97.5%. At the same time, the nominal reliability of
the optimized solutions was maximized and reached val-
ues equal or close to 100%. The SORepDecay variant,
which was developed successively after elaborating on
the strengths and weaknesses of the procedural elements
of the other variants, virtually exhibits only one tuning
parameter, which is the size of the evaluation stack Seval.
Appropriate values of this parameter for other problems
can be expected to vary, although this study indicates
that Seval can be relatively small compared with the total
stack size.

The transferability of the results to other, different prob-
lems of reliability-based optimization can not be predicted
by merely considering the findings of this paper. Expect-
edly, controlling factors will include the type and dimen-
sionality of a problem, as well as stack size and the
embodied variability of model parameters. However, solv-
ers such as evolutionary algorithms proved to be suitable
for a broad range of problems with different levels of com-
plexity. Alternative solvers are available which may be
more efficient in other applications. In particular, the com-
bination of stack ordering with a genetic algorithm is a self-
evident alternative to the technique which constituted the
focus of this study.

The most appealing feature of the study presented here
is the computational efficiency of the procedure, despite
the straightforward underlying concept. Although several
variant-specific control parameters used have been set
empirically, high quality results could be attained. This
suggests an enormous potential for stack ordering, which
may be used even more efficiently after a more comprehen-
sive parameter analysis. There is also space to amend the
variants presented here, for example, by modifications of
the probability-based sampling approach, by dynamic
adaptation of evaluation stack size or by an alternative
implementation of the criteria for filtering critical
realizations.

Although of interest to other disciplines of reliability-
based design, stack ordering has been particularly devel-
oped for stochastic optimization problems in groundwater
management, where we face complex objective functions
and commonly use multiple equally probable distributed
parameter realizations or even multiple conceptual models.
The presented implementation is only capable of finding
optimal solutions at maximal reliability. Although this
reflects an intention of, for example, contaminant ground-
water management, variants of the procedure that deter-
mine solutions at lower given reliability are conceivable.

A major practical advantage is that the applicability of
the presented procedural elements of the stochastic optimi-
zation approach is independent of the problem to be
solved. There is no insight necessary into the physical pro-
cesses involved and no (linearity) assumptions to model
equations are needed to find a highly reliable optimized
solution. At the same time, the automatic identification
of critical realizations could be used to identify the main
physical controlling parameters by inspecting similarities
of those realizations with highest credits.

Acknowledgements

Financial support from the German Research Founda-
tion (Deutsche Forschungsgesellschaft, DFG, Contract
No. BA 2850/1-2) for this project is gratefully acknowl-
edged. We thank Anna Bentz and three anonymous review-
ers for their comments and suggestions that helped to
improve the manuscript.

References

[1] Aly AH, Peralta RC. Optimal design of aquifer cleanup systems
under uncertainty using a neural network and a genetic algorithm.
Water Resour Res 1999;35(8):2523–32.

[2] Baalousha H, Kongeter J. Stochastic modelling and risk analysis of
groundwater pollution using FORM coupled with automatic differ-
entiation. Adv Water Resour 2006;29(12):1815–32.

P. Bayer et al. / Advances in Water Resources 31 (2008) 399–417 417
[3] Baú DA, Mayer AS. Data-worth analysis for multiobjective optimal
design of pump-and-treat remediation systems. Adv Water Resour
2007;30(8):1815–30.

[4] Bayer P, Finkel M. Evolutionary algorithms for the optimization of
advective control of contaminated aquifer zones. Water Resour Res
2004;40(6). doi:10.1029/2003WR002675.

[5] Bayer P, Finkel M. Optimization of concentration control by CMA-
ES: formulation, application and assessment of remedial solutions.
Water Resour Res 2007;43. doi:10.1029/2005WR004753.

[6] Bayer P, Finkel M, Teutsch G. Combining pump-and-treat and
physical barriers for contaminant plume control. Ground Water
2004;42(6):856–67.

[7] Bierkens MFP. Design a monitoring network for detecting ground-
water pollution with stochastic simulation and a cost model. Stoch
Environ Res Risk Assess 2006;20:335–51.

[8] Bürger CM, Bayer P, Finkel M. Algorithmic funnel-and-gate system
design optimization. Water Resour Res 2007;43:W08426.
doi:10.1029/2006WR005058.

[9] Camp CV, Outlaw Jr JE. Stochastic approach to delineating wellhead
protection areas. J Water Resour Plan Manage 1998;1244:199–209.

[10] Cantoni M, Marseguerra M, Zio E. Genetic algorithms and Monte
Carlo simulation for optimal plant design. Reliab Eng Syst Safety
2000;68(1):29–38.

[11] Carrera J, Alcolea A, Medina A, Hidalgo J, Slooten LJ. Inverse
problem in hydrogeology. Hydrogeol J 2005;13(1):206–22.

[12] Chan Hilton AB, Culver TB. Groundwater remediation design under
uncertainty using genetic algorithms. J Water Resour Plan Manage
2005;131(1):25–34.

[13] Chan N. Robustness of the multiple realization method for stochastic
hydraulic aquifer management. Water Resour Res 1993;29(9):
3159–67.

[14] Cirpka OA, Bürger CM, Nowak W, Finkel M. Uncertainty and data
worth analysis for the hydraulic design of funnel-and-gate systems in
heterogeneous aquifers. Water Resour Res 2004;40(11):W11502.
doi:10.1029/2004WR003352.

[15] Deutsch CV, Journel AG. GSLIB: Geostatistical Software Library
and User’s Guide. 2nd ed. New York: Oxford Univ. Press; 1998.

[16] Ditlevsen O, Madsen HO. Structural reliability methods. New
York: J. Wiley & Sons; 1996. p. 384.

[17] Feyen L, Gorelick SM. Reliable groundwater management in
hydroecologically sensitive areas. Water Resour Res 2004;40(7):
W074081–W0740814.

[18] Freeze RA, Massmann H, Smith L, Sperling T, James B. Hydrogeolog-
ical decision analysis: 1. A framework.GroundWater 1990;28(5):738–66.

[19] Goldberg DE. Genetic algorithms in search, optimization, and
machine learning. Reading (MA): Addison-Wesley; 1989.

[20] Gomez-Hernandez JJ, Carrera J. Using linear approximations to
rank realizations in groundwater modeling: application to worst case
selection. Water Resour Res 1994;30(7):2065–72.

[21] Gopalakrishnan G, Minsker BS, Goldberg DE. Optimal sampling in
a noisy genetic algorithm for risk-based remediation design. J
Hydroinformat 2003:11–25.

[22] Hansen N, Ostermeier A. Completely derandomized self-adaptation
in evolution strategies. Evol Comput 2001;9(2):159–95.

[23] Hansen N, Müller SD, Koumoutsakos P. Reducing the time
complexity of the derandomized evolution strategy with covariance
matrix adaptation (CMA-ES). Evol Comput 2003;11(1):1–18.

[24] Harbaugh A, Banta E, Hill M, McDonald M. MODFLOW-2000, in
the U.S. Geological Survey modular ground-water flow process, U.S
Geol. Surv. Open File Rep. 00-92; 2000.

[25] Hendricks Franssen HJWM, Gómez-Hernández JJ. Impact of
measurement errors in stochastic inverse conditional modelling by
the self-calibrating approach. Adv Water Resour 2003;26(5):501–11.

[26] Jia Y, Culver TB. Robust optimization for total maximum daily load
allocations. Water Resour Res 2006;42(2).

[27] Jyrkama MI, Sykes JF. Sensitivity and uncertainty analysis of the
recharge boundary condition. Water Resour Res 2006;42(1):W01404.
doi:10.1029/2005WR004408.
[28] Kollat JB, Reed PM. Comparing state-of-the-art evolutionary multi-
objective algorithms for long-term groundwater monitoring design.
Adv Water Resour 2006;29(6):792–807.

[29] Kübert M, Finkel M. Contaminant mass discharge estimation in
groundwater based on multi-level point measurements: a numerical
evaluation of expected errors. J Contam Hydrol 2006;84(1–2):55–80.

[30] Kunstmann H, Kinzelbach W, Siegfried T. Conditional first-order
second-moment method and its application to the quantification of
uncertainty in groundwater modelling. Water Resour Res 2002;
38(4):61–615.

[31] Kupfersberger H, Deutsch CV. Ranking stochastic realizations for
improved aquifer response uncertainty assessment. J Hydrol 1999;
223(1–2):54–65.

[32] Mantoglou A, Kourakos G. Optimal groundwater remediation under
uncertainty using multi-objective optimisation. Water Resour Man-
age 2007;21(5):835–47.

[33] Marseguerra M, Zio E. Optimizing maintenance and repair policies
via a combination of genetic algorithms and Monte Carlo simulation.
Reliab Eng Syst Safety 2000;68(1):69–83.

[34] Mayer AS, Kelley T, Miller CT. Optimal design for problems
involving flow and transport phenomena in subsurface systems. Adv
Water Resour 2002;25:1233–56.

[35] Mehl S, Hill MC. A comparison of solute-transport solution
techniques and their effect on sensitivity analysis and inverse
modeling results. Ground Water 2001;39(2):300–7.

[36] Minsker BS, Shoemaker CA. Quantifying the effects of uncertainty on
optimal groundwater bioremediation policies. Water Resour Res
1998;34(12):3615–25.

[37] Morgan DR, Eheart JW, Valocchi AJ. Aquifer remediation design
under uncertainty using a new chance constrained programming
technique. Water Resour Res 1993;29(3):551–61.

[38] Mulvey JN, Vanderbrei RJ, Zenios SA. Robust optimization of large
scale systems. Oper Res 1995;43(2):264–80.

[39] Pollock DW. User’s Guide for MODPATH/MODPATH-PLOT,
Vers. 3: A particle tracking post-processing package for MOD-
FLOW, the U.S. Geological Survey finite-difference ground-water
flow model, 94-464; 1994.

[40] Ranjithan S, Eheart JW, Garrett Jr JH. Neural network-based
screening for groundwater reclamation under uncertainty. Water
Resour Res 1993;29(3):563–74.

[41] Reed P, Minsker B, Goldberg DE. Designing a competent simple
genetic algorithm for search and optimisation. Water Resour Res
2000;36(12):3757–61.

[42] Saitou K, Izui K, Nishiwaki S, Papalambros P. A survey of structural
optimization in mechanical product development. J Comput Informat
Sci Eng 2005;5(3):214–26.

[43] Sawyer CS, Lin Y-F. Mixed-integer chance-constrained models for
ground-water remediation. J Water Resour Plan Manage 1998;124(5):
285–94.

[44] Smalley JB, Minsker BS, Goldberg DE. Risk-based in situ bioreme-
diation design using a noisy genetic algorithm. Water Resour Res
2000;36(10):3043–52.

[45] Stauffer F, Guadagnini A, Butler A, Franssen H-JH, van de Wiel N,
Bakr M, et al. Delineation of source protection zones using statistical
methods. Water Resour Manage 2005;19(2):163–85.

[46] Takyi AK, Lence BJ. Surface water quality management using a
multiple-realization chance constraint method. Water Resour Res
1999;35(5):1657–70.

[47] Wagner BJ, Gorelick SM. Reliable aquifer remediation in the
presence of spatially variable hydraulic conductivity: from data to
design. Water Resour Res 1989;25(10):2211–25.

[48] Wu J, Zheng C, Chien CC, Zheng L. A comparative study of Monte
Carlo simple genetic algorithm and noisy genetic algorithm for cost-
effective sampling network design under uncertainty. Adv Water
Resour 2006;29(6):899–911.

[49] Zheng C, Wang PP. An integrated global and local optimization
approach for remediation system design. Water Resour Res 1999;
35(1):137–48.

http://dx.doi.org/10.1029/2003WR002675
http://dx.doi.org/10.1029/2005WR004753
http://dx.doi.org/10.1029/2006WR005058
http://dx.doi.org/10.1029/2004WR003352
http://dx.doi.org/10.1029/2005WR004408

	Computationally efficient stochastic optimization using multiple realizations
	Introduction
	Stochastic optimization in groundwater management: related work
	Stacking method
	Optimization procedures

	Water supply problem formulation
	Demonstration example
	Stack ordering procedures
	Basic stack ordering (SO) and no ordering (NO) procedure
	The stack ordering and reduction (SORed) procedure
	Stack ordering and no ordering with replacement (SORep, SORepDecay and NORep)

	Application and results
	Optimization procedure and evaluation
	Stack ordering and break (SO)
	Stack ordering and reduction (SORed)
	Stack ordering and replacement (SORep)
	Stack ordering, replacement and decay (SORepDecay)

	Conclusions and outlook
	Acknowledgements
	References

